User Manual

IPsec Tunnel
Industrial Cellular Router
OWL 3G, OWL LTE
The naming of copyrighted trademarks in this manual, even when not specially indicated, should not be taken to mean that these names may be considered as free in the sense of the trademark and tradename protection law and hence that they may be freely used by anyone.

© 2018 Hirschmann Automation and Control GmbH

Manuals and software are protected by copyright. All rights reserved. The copying, reproduction, translation, conversion into any electronic medium or machine scannable form is not permitted, either in whole or in part. An exception is the preparation of a backup copy of the software for your own use.

The performance features described here are binding only if they have been expressly agreed when the contract was made. This document was produced by Hirschmann Automation and Control GmbH according to the best of the company's knowledge. Hirschmann reserves the right to change the contents of this document without prior notice. Hirschmann can give no guarantee in respect of the correctness or accuracy of the information in this document.

Hirschmann can accept no responsibility for damages, resulting from the use of the network components or the associated operating software. In addition, we refer to the conditions of use specified in the license contract.

You can get the latest version of this manual on the Internet at: https://www.doc.hirschmann.com

Hirschmann Automation and Control GmbH
Stuttgarter Str. 45-51
72654 Neckartenzlingen
Germany
Used symbols

Danger – important notice, which may have an influence on the user’s safety or the function of the device.

Attention – notice on possible problems, which can arise in specific cases.

Information, notice – information, which contains useful advice or special interest.
Contents

1 IPsec and its protocols .. 1
 1.1 Authentication Header (AH) 1
 1.1.1 Usage of Authentication Header protocol 2
 1.2 Encapsulating Security Payload (ESP) 2
 1.2.1 Usage of Encapsulating Security Payload protocol 3

2 Configuration of IPsec tunnel 4

3 Examples of use .. 8
 3.1 IPsec tunnel – initiator on the router 8
 3.1.1 Configuration via web interface 8
 3.1.2 Detection of the successful establishment of the tunnel 9
 3.2 IPsec tunnel – responder on the router 10
 3.2.1 Configuration via web interface 10
 3.2.2 Detection of the successful establishment of the tunnel 11
 3.3 IPsec tunnel – Linux server 12
 3.4 IPsec tunnel – CISCO router 13
 3.4.1 Configuration – initiator on the router 13
 3.4.2 Configuration – responder on the router 18
 3.5 IPsec tunnel – Computer with Windows 24
 3.5.1 IPsec configuration (NCP Secure Entry Client) 24
 3.5.2 Configuration of Hirschmann router 30

4 Recommended literature ... 32
List of Figures

1. AH – transport mode ... 2
2. AH – tunnel mode ... 2
3. ESP – transport mode .. 3
4. ESP – tunnel mode ... 3
5. Overview of IPsec tunnels ... 4
6. Configuration form of IPsec tunnel ... 7
7. IPsec tunnel – initiator on the router ... 8
8. Information about IPsec tunnel (initiator) 9
9. IPsec tunnel – responder on the router 10
10. Information about IPsec tunnel (responder) 11
11. IPsec tunnel – Linux server .. 12
12. IPsec tunnel – CISCO router ... 13
13. IPsec tunnel – Windows .. 24
14. NCP Secure Entry Client ... 24
15. NCP Secure Entry Client – Profiles .. 25
16. NCP Secure Entry Client – Edit ... 25
17. NCP Secure Entry Client – IPsec General Settings 26
18. NCP Secure Entry Client – Policy Editor 26
19. NCP Secure Entry Client – Pre-shared Key 27
20. NCP Secure Entry Client – Policy Editor 27
21. NCP Secure Entry Client – IPsec Policy 28
22. NCP Secure Entry Client – IPsec General Settings 28
23. NCP Secure Entry Client – Identities 29
24. NCP Secure Entry Client – IPsec Address Assignment 29
25. NCP Secure Entry Client – Add IP network 30
26. NCP Secure Entry Client – Split Tunneling 30
27. Configuration of Hirschmann router .. 31
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview of IPsec tunnels</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Configuration of IPsec tunnel</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>IPsec tunnel settings (initiator)</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>IPsec tunnel settings (responder)</td>
<td>10</td>
</tr>
</tbody>
</table>
1. IPsec and its protocols

IPsec (Internet Protocol Security) is a security extension of IP protocol based on authentication and encryption of every IP datagram. Within the OSI architecture, it is security at the network layer, which means that IPsec provides security for any transfer (any network application).

IPsec pay attention to these major security issues:

- **Authenticating** – Allows to verify the origin of the data, so if a packet is received, it is possible to verify that the transmitted packet corresponds to the sender or whether the sender exists at all (Phase I, IKE phase, Main mode). At PSK ends with key exchange.

- **Encrypting** – Both of sides agree on the form of packet encryption in advance. Thereafter the entire packet apart from the IP header will be encrypted, alternatively the entire packet will be encrypted and a new IP header will be added (Phase II, IPsec phase, Quick mode). Ends with establishing of a tunnel.

IPsec consists of two basic protocols – Authentication Header (AH) and Encapsulating Security Payload (ESP). Protocols are complementary, so they are usually used simultaneously. A significant advantage of the simultaneous use of these two protocols is a higher level of security. Increased overhead when processing may eliminate this advantage. Part of IPsec is also IKE (Internet Key Exchange) protocol (key management). IKE creates logical channels which are called Security Associations (SA). These channels are always unidirectional therefore it is necessary to use two separate channels (SA) for duplex. IKE also supports automatic generation and recovery of encryption keys.

1.1 Authentication Header (AH)

It provides authentication of sender and recipient, integrity of data in the header and protection against reverse queries. However, AH protocol does not provide confidentiality of data. This means that sent data are unencrypted and can be eavesdropped.

When using the Authentication Header protocol, each packet contains a special header which contains authentication information followed by data of the protocol itself. Authentication information consists of the result of a cryptographic checksum (it’s used the SHA-1 or MD5 algorithm), security parameters (Security Parameter Index, SPI) and pointer to the header of higher level protocol. Items, which are changing in header of higher level protocol during a packet transmission (such as TTL item, for example), are ignored in the calculation of authentication information.
1. **IPSEC AND ITS PROTOCOLS**

1.1.1 **Usage of Authentication Header protocol**

Authentication Header protocol can be used in two ways – in *transport mode* or in *tunnel mode*. Transport mode allows data protection using a header of AH protocol, which is inserted by the sender of the datagram between other extension headers. This mode requires less overhead when processing than the tunnel mode, but does not provide such security of data protection.

![Figure 1: AH – transport mode](image)

Tunnel mode (sometimes tunneling mode) creates a new IP header which is followed by header of Authentication Header protocol. This is followed by the entire original datagram packaged as new data datagram. In this mode, the AH protocol authenticates the entire datagram, which means that it is possible to determine whether the datagram has changed during transmission. The main advantage of the tunnel mode is perfect protection of an encapsulated IP datagram. Furthermore, it allows the use of private addresses.

![Figure 2: AH – tunnel mode](image)

1.2 **Encapsulating Security Payload (ESP)**

Encapsulating Security Payload (ESP) protocol ensures the confidentiality of transmitted data (encrypts packets) and optionally the original authentication, data integrity and protection against reverse queries. As with the Authentication Header (AH) protocol, additional header is attached to an IP packet. This header contains the security parameters which are followed by encrypted data. However, the outer header is not protected and its integrity is not guaranteed.

In case of requirement for encryption and authentication, system which responds first authenticates packet and if the first step is successful, continues with encryption. This type of configuration reduces both overhead of processing and vulnerability in case of attack when denial of service.
1.2.1 Usage of Encapsulating Security Payload protocol

ESP protocol can be used in two ways – in transport mode or in tunnel mode. Transport mode inserts ESP header behind the IP header of the original IP datagram. ESP trailer and optional authentication data follow data of the original datagram. Transport mode requires less overhead when processing than the tunnel mode, but does not provide such security of data protection.

Figure 3: ESP – transport mode

Tunnel mode (sometimes tunneling mode) creates a new IP header which is followed by header of Encapsulating Security Payload protocol. This is followed by the entire original datagram packaged as new data datagram. This allows to completely protect original datagram (in case that encryption and authentication are used). ESP trailer and optional authentication data follow data of the original datagram.

Figure 4: ESP – tunnel mode
2. Configuration of IPsec tunnel

IPsec tunnel creates a secure (encrypted) connection between two LANs into one that looks like a homogeneous. Hirschmann routers allow users to create up to four IPsec tunnels whose configuration can be called up by selecting the IPsec menu item. There are four lines in the IPsec Tunnels Configuration window, each line corresponds to the configuration of one tunnel.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>Enables (activates) individual tunnels (yes or no)</td>
</tr>
<tr>
<td>Description</td>
<td>Name or description of the tunnel specified in the configuration form of IPsec tunnel</td>
</tr>
<tr>
<td>Edit</td>
<td>Displays the configuration form of the IPsec tunnel</td>
</tr>
</tbody>
</table>

Table 1: Overview of IPsec tunnels

![Figure 5: Overview of IPsec tunnels](image)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Name (description) of the tunnel</td>
</tr>
<tr>
<td>Remote IP Address</td>
<td>IP address of remote side of the tunnel. It is also possible to enter the domain name.</td>
</tr>
<tr>
<td>Remote ID</td>
<td>Identifier (ID) of remote side of the tunnel. It consists of two parts: hostname and domain-name.</td>
</tr>
<tr>
<td>Remote Subnet</td>
<td>IP address of a network behind remote side of the tunnel</td>
</tr>
<tr>
<td>Remote Subnet Mask</td>
<td>Subnet mask of a network behind remote side of the tunnel</td>
</tr>
<tr>
<td>Local ID</td>
<td>Identifier (ID) of local side of the tunnel. It consists of two parts: hostname and domain-name.</td>
</tr>
<tr>
<td>Local Subnet</td>
<td>IP address of a local network</td>
</tr>
<tr>
<td>Local subnet mask</td>
<td>Subnet mask of a local network</td>
</tr>
<tr>
<td>Encapsulation Mode</td>
<td>IPsec mode (according to the method of encapsulation) – You can choose tunnel (entire IP datagram is encapsulated) or transport (only IP header).</td>
</tr>
</tbody>
</table>

Continued on next page
2. CONFIGURATION OF IPSEC TUNNEL

Continued from previous page

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT traversal</td>
<td>If address translation is used between two end points of the tunnel, it needs to enable NAT Traversal.</td>
</tr>
<tr>
<td>IKE Mode</td>
<td>Defines mode for establishing connection (main or aggressive). If the aggressive mode is selected, establishing of IPsec tunnel will be faster, but encryption will set permanently on 3DES-MD5.</td>
</tr>
<tr>
<td>IKE Algorithm</td>
<td>Way of algorithm selection:</td>
</tr>
<tr>
<td></td>
<td>• auto – encryption and hash alg. are selected automatically</td>
</tr>
<tr>
<td></td>
<td>• manual – encryption and hash alg. are defined by the user</td>
</tr>
<tr>
<td>IKE Encryption</td>
<td>Encryption algorithm – 3DES, AES128, AES192, AES256</td>
</tr>
<tr>
<td>IKE Hash</td>
<td>Hash algorithm – MD5 nebo SHA1</td>
</tr>
<tr>
<td>IKE DH Group</td>
<td>Diffie-Hellman groups determine the strength of the key used in the key exchange process. Higher group numbers are more secure, but require additional time to compute the key. Group with higher number provides more security, but requires more processing time.</td>
</tr>
<tr>
<td>ESP Algorithm</td>
<td>Way of algorithm selection:</td>
</tr>
<tr>
<td></td>
<td>• auto – encryption and hash alg. are selected automatically</td>
</tr>
<tr>
<td></td>
<td>• manual – encryption and hash alg. are defined by the user</td>
</tr>
<tr>
<td>ESP Encryption</td>
<td>Encryption algorithm – DES, 3DES, AES128, AES192, AES256</td>
</tr>
<tr>
<td>ESP Hash</td>
<td>Hash algorithm – MD5 nebo SHA1</td>
</tr>
<tr>
<td>PFS</td>
<td>Ensures that derived session keys are not compromised if one of the private keys is compromised in the future</td>
</tr>
<tr>
<td>PFS DH Group</td>
<td>Diffie-Hellman group number (see IKE DH Group)</td>
</tr>
<tr>
<td>Key Lifetime</td>
<td>Lifetime key data part of tunnel. The minimum value of this parameter is 60 s. The maximum value is 86400 s.</td>
</tr>
<tr>
<td>IKE Lifetime</td>
<td>Lifetime key service part of tunnel. The minimum value of this parameter is 60 s. The maximum value is 86400 s.</td>
</tr>
<tr>
<td>Rekey Margin</td>
<td>Specifies how long before connection expiry should attempt to negotiate a replacement begin. Maximum value must be less than half of IKE and Key Lifetime parameters</td>
</tr>
<tr>
<td>Rekey Fuzz</td>
<td>Percentage extension of Rekay Margin time</td>
</tr>
<tr>
<td>DPD Delay</td>
<td>Time after which the IPsec tunnel functionality is tested</td>
</tr>
<tr>
<td>DPD Timeout</td>
<td>The period during which device waits for a response</td>
</tr>
</tbody>
</table>

Continued on next page
2. CONFIGURATION OF IPSEC TUNNEL

Continued from previous page

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authenticate Mode</td>
<td>Using this parameter can be set authentication:</td>
</tr>
<tr>
<td></td>
<td>• Pre-shared key – sets the shared key for both sides of the tunnel</td>
</tr>
<tr>
<td></td>
<td>• X.509 Certificate – allows X.509 authentication in multi-client mode</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>Shared key for both sides of the tunnel to Pre-shared key authenticate</td>
</tr>
<tr>
<td>CA Certificate</td>
<td>Certificate for X.509 authentication</td>
</tr>
<tr>
<td>Remote Certificate</td>
<td>Certificate for X.509 authentication</td>
</tr>
<tr>
<td>Local Certificate</td>
<td>Certificate for X.509 authentication</td>
</tr>
<tr>
<td>Local Private Key</td>
<td>Private key for X.509 authentication</td>
</tr>
<tr>
<td>Local Passphrase</td>
<td>Passphrase for X.509 authentication</td>
</tr>
<tr>
<td>Extra Options</td>
<td>Use this parameter to define additional parameters of the IPsec tunnel, for example secure parameters etc.</td>
</tr>
</tbody>
</table>

Table 2: Configuration of IPsec tunnel
2. CONFIGURATION OF IPSEC TUNNEL

Figure 6: Configuration form of IPsec tunnel
3. Examples of use

3.1 IPsec tunnel – initiator on the router

IP address of the SIM card inserted into Hirschmann router can be static or dynamic, because IPsec tunnel is established by initiator on the router. In this case, Linux server (CISCO router) offers services for IPsec tunnel therefore it must always be available on a static IP address or on a domain name.

If addresses of tunnel ends are visible to one another, all you have to do is specify these items: Description, Remote IP address, Remote Subnet, Remote Subnet Mask, Local Subnet and Local Subnet Mask. If not (one end of the tunnel is in a private network), it is necessary to enable NAT Traversal.

If NAT Traversal is active, it is also necessary to set Remote ID. As the ID has to be filled FQDN (Fully Qualified Domain Name), which is the designation for a fully specified domain name of the computer. It is also possible to set authentication using certificates, but then there is no need to enter Remote ID.

Figure 7: IPsec tunnel – initiator on the router
The following table provides an example of IPsec tunnel settings which correspond to the figure from the beginning of this chapter:

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote IP Address</td>
<td>83.208.155.127</td>
</tr>
<tr>
<td>Remote ID</td>
<td>ciscoasa@default.domain</td>
</tr>
<tr>
<td>Remote Subnet</td>
<td>192.168.1.0</td>
</tr>
<tr>
<td>Remote Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Local Subnet</td>
<td>192.168.3.0</td>
</tr>
<tr>
<td>Local Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>test</td>
</tr>
<tr>
<td>NAT Traversal</td>
<td>enabled</td>
</tr>
</tbody>
</table>

Table 3: IPsec tunnel settings (initiator)

Other parameters can be left in default settings. If the Remote IP Address parameter is empty on one side of IPsec tunnel, then this side will wait for a connection and will not attempt to establish a connection.

All items that are not mentioned in the sample settings and are marked with an asterisk (*) may not be filled in. They are used to accurate identification of the tunnel.

3.1.2 Detection of the successful establishment of the tunnel

Information about the active IPsec tunnel can be found in the Status section on the IPsec page of the router web interface.

It is possible to read the selected encryption in various stages of establishing the tunnel from the figure above:

- IKE: 3DES_CBC_192-MD5-MODP1024
- ESP: 3DES_0-HMAC_MD5, pfsgroup = none

The highlighted part shows information about the successful establishment of IPsec tunnel.
3.2 IPsec tunnel – responder on the router

Hirschmann router must have an available static IP address or dynamic IP address of the SIM card in case of using translation of dynamically assigned IP addresses to DynDNS domain name. In this case, Linux server (CISCO router) is initiator and establishes IPsec tunnel.

![Diagram showing IPsec tunnel - responder on the router](image)

Figure 9: IPsec tunnel – responder on the router

3.2.1 Configuration via web interface

If addresses of tunnel ends are visible to one another, all you have to do is specify these items: *Description*, *Remote Subnet* and *Remote Subnet Mask*. If not (one end of the tunnel is in a private network), it is necessary to enable *NAT Traversal*.

If *NAT Traversal* is active, it is also necessary to set *Remote ID*. As the ID has to be filled FQDN (Fully Qualified Domain Name), which is the designation for a fully specified domain name of the computer. It is also possible to set authentication using certificates, but then there is no need to enter *Remote ID*.

The following table provides an example of IPsec tunnel settings which correspond to the figure from the beginning of this page:

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote ID</td>
<td>ciscoasa@default.domain</td>
</tr>
<tr>
<td>Remote Subnet</td>
<td>192.168.2.219</td>
</tr>
<tr>
<td>Remote Subnet Mask</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>test</td>
</tr>
<tr>
<td>NAT Traversal</td>
<td>enabled</td>
</tr>
</tbody>
</table>

Table 4: IPsec tunnel settings (responder)
Other parameters can be left in default settings. If the *Remote IP Address* parameter is empty on one side of IPsec tunnel, then this side will wait for a connection and will not attempt to establish a connection.

All items that are not mentioned in the sample settings and are marked with an asterisk (*) may not be filled in. They are used to accurate identification of the tunnel.

3.2.2 Detection of the successful establishment of the tunnel

Information about the active IPsec tunnel can be found in the *Status* section on the *IPsec* page of the router web interface.

![Image of IPsec Status](image)

Figure 10: Information about IPsec tunnel (responder)

It is possible to read the selected encryption in various stages of establishing the tunnel from the figure above:

- **IKE**: 3DES_CBC_192-MD5-MODP1024
- **ESP**: 3DES_0-HMAC_MD5, pfsgroup = none

The highlighted part shows information about the successful establishment of IPsec tunnel.
3.3 IPsec tunnel – Linux server

On the Linux server is needed to configure `ipsec.conf` and `ipsec.secrets` files. Configuration of `ipsec.conf` file can be performed for example like this:

```
conn hirschmannrouter
  authby=secret
  type=tunnel
  left=83.208.155.127
  leftsubnet=192.168.1.0/24
  right=172.24.68.112
  rightsubnet=192.168.3.0/24
  ikelifetime=3600s
  keylife=3600s
  pfs=no
  auto=add
```

`ipsec.secrets` file shall be configured as follows:

```
83.208.155.127 172.24.68.112: PSK "test"
```
3.4 IPsec tunnel – CISCO router

Please note that CISCO routers support IPsec protocol since IOS version no. 7.1.

Figure 12: IPsec tunnel – CISCO router

3.4.1 Configuration – initiator on the router

ASA Version 7.2(3)
!
hostname ciscoasa
domain-name default.domain
!
interface Vlan1
 nameif inside
 security-level 100
 ip address 192.168.1.1 255.255.255.0
!
interface Vlan2
 nameif outside
 security-level 100
 ip address 192.168.2.219 255.255.255.0
!
interface Ethernet0/0
 switchport access vlan 2
!
interface Ethernet0/1
!
interface Ethernet0/2
3. EXAMPLES OF USE

! interface Ethernet0/3
! interface Ethernet0/4
! interface Ethernet0/5
! interface Ethernet0/6
! interface Ethernet0/7
! passwd 2KFQnbNIdI.2KY0U encrypted
ftp mode passive
dns server-group DefaultDNS
domain-name default.domain
same-security-traffic permit inter-interface
access-list outside_access_in extended permit ip any any
access-list outside_access_out extended permit ip any any
access-list inside_access_in extended permit ip any any
access-list inside_access_out extended permit ip any any
access-list outside_2_cryptomap extended permit ip 192.168.1.0 255.255.255.0
 192.168.3.0 255.255.255.0
pager lines 24
logging enable
logging asdm informational
logging class auth asdm emergencies
logging class ip asdm critical
mtu inside 1500
mtu outside 1500
icmp unreachable rate-limit 1 burst-size 1
asdm image disk0:/asdm-523.bin
no asdm history enable
arp timeout 14400
global (outside) 1 interface
access-group inside_access_in in interface inside
access-group inside_access_out out interface inside
access-group outside_access_in in interface outside
access-group outside_access_out out interface outside
route outside 0.0.0.0 0.0.0.0 192.168.2.27 1
timeout xlate 3:00:00
timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02
timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00
 mgcp-pat 0:05:00
timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00
3. EXAMPLES OF USE

sip-disconnect 0:02:00
timeout uauth 0:05:00 absolute
http server enable
http 192.168.1.0 255.255.255.0 inside
no snmp-server location
no snmp-server contact
snmp-server enable traps snmp authentication linkup linkdown coldstart
crypto ipsec transform-set ESP-DES-MD5 esp-des esp-md5-hmac
crypto ipsec transform-set ESP-DES-SHA esp-des esp-sha-hmac
crypto ipsec transform-set ESP-3DES-SHA esp-3des esp-sha-hmac
crypto ipsec transform-set ESP-AES-128-SHA esp-aes esp-sha-hmac
crypto ipsec transform-set ESP-AES-256-MD5 esp-aes-256 esp-md5-hmac
crypto ipsec transform-set ESP-AES-256-SHA esp-aes-256 esp-sha-hmac
crypto ipsec transform-set ESP-AES-128-MD5 esp-aes esp-md5-hmac
crypto ipsec transform-set ESP-AES-128-MD5 esp-aes-192 esp-md5-hmac
crypto ipsec transform-set ESP-AES-192-SHA esp-aes-192 esp-sha-hmac
crypto ipsec transform-set UR1 esp-3des esp-none
crypto ipsec transform-set UR2 esp-des esp-none
crypto ipsec transform-set ESP-3DES-MD5 esp-3des esp-md5-hmac
crypto map outside_map 1 match address outside_2_cryptomap
crypto map outside_map 1 set connection-type answer-only
crypto map outside_map 1 set peer 172.24.68.112
crypto map outside_map 1 set transform-set ESP-3DES-MD5
crypto map outside_map interface outside
crypto isakmp identity hostname
crypto isakmp enable outside
crypto isakmp policy 10
 authentication pre-share
 encryption 3des
 hash md5
 group 2
 lifetime 3600
crypto isakmp nat-traversal 20
vpn-sessiondb max-session-limit 1
telnet timeout 5
ssh timeout 5
console timeout 0
l2tp tunnel hello 300
dhcpd auto_config outside
!
dhcpd address 192.168.1.2-192.168.1.33 inside
dhcpd enable inside
!
class-map inspection_default
 match default-inspection-traffic
!
!
policy-map type inspect dns preset_dns_map
 parameters
 message-length maximum 512
policy-map global_policy
 class inspection_default
 inspect dns preset_dns_map
 inspect ftp
 inspect h323 h225
 inspect h323 ras
 inspect rsh
 inspect rtsp
 inspect esmtp
 inspect sqlnet
 inspect skinny
 inspect sunrpc
 inspect xdmcp
 inspect sip
 inspect netbios
 inspect tftp
 inspect icmp
 inspect icmp error
 inspect ipsec-pass-thru
!
service-policy global_policy global
ssl encryption 3des-sha1 aes128-sha1 aes256-sha1 des-sha1 rc4-md5
group-policy DfltGrpPolicy attributes
 banner none
 wins-server none
 dns-server none
 dhcp-network-scope none
 vpn-access-hours none
 vpn-simultaneous-logins 3
 vpn-idle-timeout none
 vpn-session-timeout none
 vpn-filter none
 vpn-tunnel-protocol IPSec l2tp-ipsec webvpn
 password-storage disable
 ip-comp disable
 re-xauth disable
 group-lock none
pfs disable
ipsec-udp enable
ipsec-udp-port 10000
split-tunnel-policy tunnelall
split-tunnel-network-list none
default-domain none
split-dns none
intercept-dhcp 255.255.255.255 disable
secure-unit-authentication disable
user-authentication disable
user-authentication-idle-timeout none
ip-phone-bypass disable
leap-bypass disable
nem disable
backup-servers keep-client-config
msie-proxy server none
msie-proxy method no-modify
msie-proxy except-list none
msie-proxy local-bypass disable
nac disable
nac-sq-period 300
nac-reval-period 36000
nac-default-acl none
address-pools none
smartcard-removal-disconnect enable
client-firewall none
client-access-rule none
webvpn
 functions none
html-content-filter none
 homepage none
 keep-alive-ignore 4
 http-comp gzip
filter none
url-list none
customization value DfltCustomization
port-forward none
port-forward-name value Application Access
sso-server none
deny-message value Login was successful, but because certain criteria
 have not been met or due to some specific group policy, you do not
 have permission to use any of the VPN features. Contact your IT
 administrator for more information
svc none
svc keep-installer installed
svc keepalive none
svc rekey time none
svc rekey method none
svc dpd-interval client none
svc dpd-interval gateway none
svc compression deflate
tunnel-group DefaultL2LGroup ipsec-attributes
 pre-shared-key *
 isakmp keepalive threshold 20 retry 10
tunnel-group 172.24.68.112 type ipsec-121
tunnel-group 172.24.68.112 ipsec-attributes
 pre-shared-key *
tunnel-group-map enable rules
tunnel-group-map default-group DefaultL2LGroup
prompt hostname context
no compression svc http-comp
zonalabs-integrity fail-timeout 20
Cryptochecksum:57784235ddef16872374b10e67a1415d
: end

3.4.2 Configuration – responder on the router

ASA Version 7.2(3)
!
hostname ciscoasa

domain-name default.domain
!
interface Vlan1
 nameif inside
 security-level 100
 ip address 192.168.1.1 255.255.255.0
!
interface Vlan2
 nameif outside
 security-level 100
 ip address 192.168.2.219 255.255.255.0
!
interface Ethernet0/0
 switchport access vlan 2
!
interface Ethernet0/1
!
interface Ethernet0/2
! interface Ethernet0/3
! interface Ethernet0/4
! interface Ethernet0/5
! interface Ethernet0/6
! interface Ethernet0/7
! passwd 2KFQnbNiIfI.2KY0U encrypted
ftp mode passive
dns server-group DefaultDNS
domain-name default.domain
same-security-traffic permit inter-interface
access-list outside_access_in extended permit ip any any
access-list outside_access_out extended permit ip any any
access-list inside_access_in extended permit ip any any
access-list inside_access_out extended permit ip any any
access-list outside_2_cryptomap extended permit ip 192.168.1.0 255.255.255.0
 192.168.3.0 255.255.255.0
pager lines 24
logging enable
logging asdm informational
logging class auth asdm emergencies
logging class ip asdm critical
mtu inside 1500
mtu outside 1500
icmp unreachable rate-limit 1 burst-size 1
asdm image disk0:/asdm-523.bin
no asdm history enable
arp timeout 14400
global (outside) 1 interface
access-group inside_access_in in interface inside
access-group inside_access_out out interface inside
access-group outside_access_in in interface outside
access-group outside_access_out out interface outside
route outside 0.0.0.0 0.0.0.0 192.168.2.27 1
timeout xlate 3:00:00
timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02
timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00
 mgcp-pat 0:05:00
timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00
3. EXAMPLES OF USE

sip-disconnect 0:02:00
timeout uauth 0:05:00 absolute
http server enable
http 192.168.1.0 255.255.255.0 inside
no snmp-server location
no snmp-server contact
snmp-server enable traps snmp authentication linkup linkdown coldstart
crypto ipsec transform-set ESP-DES-MD5 esp-des esp-md5-hmac
crypto ipsec transform-set ESP-DES-SHA esp-des esp-sha-hmac
crypto ipsec transform-set ESP-3DES-SHA esp-3des esp-sha-hmac
crypto ipsec transform-set ESP-AES-128-SHA esp-aes esp-sha-hmac
crypto ipsec transform-set ESP-AES-256-MD5 esp-aes-256 esp-md5-hmac
crypto ipsec transform-set ESP-AES-256-SHA esp-aes-256 esp-sha-hmac
crypto ipsec transform-set ESP-AES-128-MD5 esp-aes esp-md5-hmac
crypto ipsec transform-set ESP-AES-192-MD5 esp-aes-192 esp-md5-hmac
crypto ipsec transform-set ESP-AES-128-3DES-MD5 esp-aes-192 esp-sha-hmac
crypto ipsec transform-set UR1 esp-3des esp-none
crypto ipsec transform-set UR2 esp-des esp-none
crypto ipsec transform-set ESP-3DES-MD5 esp-3des esp-md5-hmac
crypto map outside_map 1 match address outside_2_cryptomap
crypto map outside_map 1 set connection-type originate-only
crypto map outside_map 1 set peer 172.24.68.112
crypto map outside_map 1 set transform-set ESP-3DES-MD5
crypto map outside_map interface outside
crypto isakmp identity hostname
crypto isakmp enable outside
crypto isakmp policy 10
 authentication pre-share
 encryption 3des
 hash md5
 group 2
 lifetime 3600
crypto isakmp nat-traversal 20
vpn-sessiondb max-session-limit 1
telnet timeout 5
ssh timeout 5
console timeout 0
l2tp tunnel hello 300
dhcpd auto_config outside
!
dhcpd address 192.168.1.2-192.168.1.33 inside
dhcpd enable inside
!
!
class-map inspection_default
 match default-inspection-traffic

policy-map type inspect dns preset_dns_map
 parameters
 message-length maximum 512

policy-map global_policy
 class inspection_default
 inspect dns preset_dns_map
 inspect ftp
 inspect h323 h225
 inspect h323 ras
 inspect rsh
 inspect rtsp
 inspect esmtp
 inspect sqlnet
 inspect skinny
 inspect sunrpc
 inspect xdmcp
 inspect sip
 inspect netbios
 inspect tftp
 inspect icmp
 inspect icmp error
 inspect ipsec-pass-thru

service-policy global_policy global
ssl encryption 3des-sha1 aes128-sha1 aes256-sha1 des-sha1 rc4-md5

group-policy DfltGrpPolicy attributes
 banner none
 wins-server none
 dns-server none
 dhcp-network-scope none
 vpn-access-hours none
 vpn-simultaneous-logins 3
 vpn-idle-timeout none
 vpn-session-timeout none
 vpn-filter none
 vpn-tunnel-protocol IPSec l2tp-ipsec webvpn
 password-storage disable
 ip-comp disable
 re-xauth disable
 group-lock none
pfs disable
ipsec-udp enable
ipsec-udp-port 10000
split-tunnel-policy tunnelall
split-tunnel-network-list none
default-domain none
split-dns none
 intercept-dhcp 255.255.255.255 disable
secure-unit-authentication disable
user-authentication disable
user-authentication-idle-timeout none
ip-phone-bypass disable
leap-bypass disable
nem disable
backup-servers keep-client-config
msie-proxy server none
msie-proxy method no-modify
msie-proxy except-list none
msie-proxy local-bypass disable
nac disable
nac-sq-period 300
nac-reval-period 36000
nac-default-acl none
address-pools none
smartcard-removal-disconnect enable
client-firewall none
client-access-rule none
webvpn
 functions none
html-content-filter none
 homepage none
 keep-alive-ignore 4
http-comp gzip
filter none
url-list none
 customization value DfltCustomization
port-forward none
port-forward-name value Application Access
sso-server none
deny-message value Login was successful, but because certain criteria
have not been met or due to some specific group policy, you do not
have permission to use any of the VPN features. Contact your IT
administrator for more information
svc none
svc keep-installer installed
svc keepalive none
svc rekey time none
svc rekey method none
svc dpd-interval client none
svc dpd-interval gateway none
svc compression deflate
tunnel-group DefaultL2LGroup ipsec-attributes
 pre-shared-key *
 isakmp keepalive threshold 20 retry 10
tunnel-group 172.24.68.112 type ipsec-121
tunnel-group 172.24.68.112 ipsec-attributes
 pre-shared-key *
tunnel-group-map enable rules
tunnel-group-map default-group DefaultL2LGroup
prompt hostname context
no compression svc http-comp
zonelabs-integrity fail-timeout 20
Crypt checksum:3745a840258fc10269e066655f5b252e
: end
3.5 IPsec tunnel – Computer with Windows

Recommended program for Windows operating system is *NCP Secure Entry Client* on which the following description is based on.

3.5.1 IPsec configuration (NCP Secure Entry Client)

The figure below shows the environment of the NCP Secure Entry Client (version 9.32, build 218).
First it is necessary to create a profile for establishing IPsec tunnel. Select Configuration tab in the menu (of NCP Secure Entry Client program) and then select Profiles item. The following window will be open:

![Profiles](image1.png)

Figure 15: NCP Secure Entry Client – Profiles

Add a new profile using the Add/Import button. On the second screen, you must enter the profile name. In other cases (on the other screens) it is possible only to confirm using the Next button (on the last screen using the Finish button) and make the necessary settings later.

Configuration of the IPsec tunnel is done by marking the profile and pressing Edit button.

![Edit](image2.png)

Figure 16: NCP Secure Entry Client – Edit
Select **IPsec General Settings** item in the menu on the left side. Then press **Police Editor**… button on the right side.

![Figure 17: NCP Secure Entry Client – IPsec General Settings](image)

In the new window highlight the **Pre-shared Key** item (in **IKE Policy** section) and then press **Edit** button.

![Figure 18: NCP Secure Entry Client – Policy Editor](image)
3. EXAMPLES OF USE

This opens a window in which select encryption and hash algorithm (for example Triple DES and MD5) and then confirm by pressing the OK button.

![IKE Policy](image1.png)

Figure 19: NCP Secure Entry Client – Pre-shared Key

Now, select the only available item in IPsec Policy section of configuration window. The item has a name ESP - AES128 - MD5. Then press Edit button.

![IPsec Configuration](image2.png)

Figure 20: NCP Secure Entry Client – Policy Editor
Enter the desired name (for example IPsec) in the new window and select encryption and hash algorithm (for example Triple DES and MD5). Then confirm it by pressing the OK button.

![Figure 21: NCP Secure Entry Client – IPsec Policy](image1)

Go back to the main window of IPsec General Settings item and set IKE Policy and IPsec Policy items based on the previous configuration (see figure below). IKE DH Group item will have a value of DH-Group 2 (2014 bit).

![Figure 22: NCP Secure Entry Client – IPsec General Settings](image2)
Now, select *Identities* item in the menu on the left side and fill in the configuration form as shown below. Note that the IP address corresponds to the exemplary situation from the beginning of this section.

![NCP Secure Entry Client – Identities](image1)

Figure 23: NCP Secure Entry Client – Identities

The same IP address (192.168.2.219 according to the exemplary situation) is also required on the *IPsec Address Assignment* page.

![NCP Secure Entry Client – IPsec Address Assignment](image2)

Figure 24: NCP Secure Entry Client – IPsec Address Assignment
Press *Add* button on the *Split Tunneling* page and enter the IP address of the subnet behind the router Hirschmann (192.168.3.0 in the exemplary situation) and relevant subnet mask (255.255.255.0) to the newly opened window. Confirm it by pressing the *OK* button.

![IP Network](image1.png)

Figure 25: NCP Secure Entry Client – Add IP network

Specified data are displayed in the original window of the *Split Tunneling* page.

![Profile Settings](image2.png)

Figure 26: NCP Secure Entry Client – Split Tunneling

3.5.2 Configuration of Hirschmann router

On the following page is displayed configuration form with IPsec tunnel settings. Entered values correspond to the exemplary situation from the beginning of this section.
3. EXAMPLES OF USE

Figure 27: Configuration of Hirschmann router

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote IP Address</td>
<td>192.168.2.219</td>
</tr>
<tr>
<td>Remote ID</td>
<td>192.168.2.219</td>
</tr>
<tr>
<td>Remote Subnet Mask</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>Local ID</td>
<td>192.168.3.9</td>
</tr>
<tr>
<td>Local Subnet Mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Encapsulation Mode</td>
<td>tunnel</td>
</tr>
<tr>
<td>NAT Traversal</td>
<td>enabled</td>
</tr>
<tr>
<td>IKE Mode</td>
<td>man</td>
</tr>
<tr>
<td>IKE Algorithm</td>
<td>auto</td>
</tr>
<tr>
<td>IKE Encryption</td>
<td>3DES</td>
</tr>
<tr>
<td>IKE Hash</td>
<td>MD5</td>
</tr>
<tr>
<td>IKE DH Group</td>
<td>2</td>
</tr>
<tr>
<td>ESP Algorithm</td>
<td>auto</td>
</tr>
<tr>
<td>ESP Encryption</td>
<td>3DES</td>
</tr>
<tr>
<td>ESP Hash</td>
<td>MD5</td>
</tr>
<tr>
<td>PFS</td>
<td>disabled</td>
</tr>
<tr>
<td>PFS DH Group</td>
<td>2</td>
</tr>
<tr>
<td>Key Lifetime</td>
<td>3600</td>
</tr>
<tr>
<td>IKE Lifetime</td>
<td>3600</td>
</tr>
<tr>
<td>Rakey Margin</td>
<td>540</td>
</tr>
<tr>
<td>Rekey Fuzz</td>
<td>100</td>
</tr>
<tr>
<td>DPD Delay</td>
<td>30 sec</td>
</tr>
<tr>
<td>DPD Timeout</td>
<td>60 sec</td>
</tr>
<tr>
<td>Authentication Mode</td>
<td>pre-shared key</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>test</td>
</tr>
</tbody>
</table>

CA Certificate

Remote Certificate

Local Certificate

Local Private Key

Local Passphrase

Extra Options

* * can be blank

[Apply]
4. Recommended literature

Application Notes, the “Installation” user manual, the “Configuration” user manual and documentation of several OWL user modules can be found as PDF files for downloading on the Internet at:

https://www.doc.hirschmann.com/
5. Further support

Technical questions
For technical questions, please contact any Hirschmann dealer in your area or Hirschmann directly.

You find the addresses of our partners on the Internet at http://www.hirschmann.com
A list of local telephone numbers and email addresses for technical support directly from Hirschmann is available at https://hirschmann-support.belden.com
This site also includes a free of charge knowledge base and a software download section.

Customer Innovation Center
The Customer Innovation Center is ahead of its competitors on three counts with its complete range of innovative services:

- Consulting incorporates comprehensive technical advice, from system evaluation through network planning to project planning.

- Training offers you an introduction to the basics, product briefing and user training with certification. You find the training courses on technology and products currently available at https://www.belden.com/solutions/customer-innovation-center

- Support ranges from the first installation through the standby service to maintenance concepts.

With the Customer Innovation Center, you decide against making any compromises in any case. Our client-customized package leaves you free to choose the service components you want to use.

Internet:
https://www.belden.com/solutions/customer-innovation-center