

Handbuch

EtherNet/IP

LioN-X IO-Link Master Multiprotokoll: 0980 XSL 3912-121-007D-00F (8 × IO-Link Class A) 0980 XSL 3912-121-007D-01F (8 × IO-Link Class A) 0980 XSL 3912-121-027D-01F (8 × IO-Link Class A) 0980 XSL 3913-121-007D-01F (8 × IO-Link Class A/B Mixmodul) 0980 XSL 3913-121-027D-01F (8 × IO-Link Class A/B Mixmodul)

LioN-Xlight IO-Link Master EtherNet/IP: 0980 LSL 3111-121-0006-002 (8 × IO-Link Class A) 0980 LSL 3110-121-0006-002 (4 × IO-Link Class A + 8 × DI)

Inhalt

1 Zu diesem Handbuch	10	
1.1 Allgemeine Informationen	10	
1.2 Erläuterung der Symbolik	11	
1.2.1 Verwendung von Gefahrenhinweisen	11	
1.2.2 Verwendung von Hinweisen	11	
1.3 Versionsinformationen	12	
2 Sicherheitshinweise	14	
2.1 Bestimmungsgemäßer Gebrauch	14	
2.2 Qualifiziertes Personal	15	
3 Bezeichnungen und Synonyme	17	
4 Systembeschreibung	21	
4.1 Über LioN-X	21	
4.2 Gerätevarianten	22	
4.3 I/O-Port-Übersicht	24	
5 Übersicht der Produktmerkmale	27	
5.1 EtherNet/IP Produktmerkmale	27	
5.2 I/O-Port Merkmale	29	
5.3 Integrierter Webserver	30	
5.4 Sicherheitsmerkmale	31	
5.5 Sonstige Merkmale	32	

6 Montage und Verdrahtung	33
6.1 Allgemeine Informationen	33
6.2 Äußere Abmessungen	34
6.2.1 LioN-X Multiprotokoll-Varianten	34
6.2.2 LioN-Xlight Varianten mit EtherNet/IP	39
6.2.3 Hinweise	41
6.3 Port-Belegungen	42
6.3.1 Ethernet-Ports, M12-Buchse, 4-polig, D-kodiert	42
6.3.2 Spannungsversorgung mit M12-Power L-kodiert	43
6.3.2.1 IO-Link Master mit Class A Ports	43
6.3.2.2 IO-Link Master mit Class A/B Ports	44
6.3.3 I/O-Ports als M12-Buchse	44
6.3.3.1 IO-Link-Ports (Class A und Class B)	45
7 Inbetriebnahme	47
7.1 EDS-Datei	47
7.2 MAC-Adressen	47
7.3 Auslieferungszustand	48
7.4 Netzwerk-Parameter einstellen	49
7.4.1 IP-Adresse für LioN-X-Varianten	49
7.4.2 IP-Adresse für LioN-Xlight-Varianten	49
7.5 Drehkodierschalter einstellen	50
7.5.1 EtherNet/IP-Einstellung und IP-Konfiguration	über
Drehkodierschalter	53
7.5.2 Werkseinstellungen wiederherstellen	54
8 Konfiguration EtherNet/IP	55
8.1 Assembly-Typen	55
8.2 Verbindungen	56
8.2.1 IO-Link Parameter (Exclusive Owner)	57

8.2.2 IO-Link Parameter (Listen Only)	57
8.2.3 IO-Link Parameter Omron (Exclusive Owner)	58
8.2.4 IO-Link Parameter Min (Exclusive Owner)	59
9 Konfigurationsparameter	60
9.1 Allgemeine Einstellungen	61
9.1.1 Force mode lock	62
9.1.2 Web interface lock	62
9.1.3 Digital Output Control	62
9.1.4 Report U _L /U _{AUX} supply voltage fault	62
9.1.5 Report DO Fault without U _L /U _{Aux}	62
9.1.6 CIP object configuration lock	62
9.1.7 External configuration lock	63
9.1.8 IO Mapping Mode	63
9.1.9 General Settings (Parameter)	64
9.2 Kanaleinstellungen	66
9.2.1 IO Mapping (Ch1 16)	68
9.2.2 DO Surveillance Timeout (Ch1 16)	68
9.2.3 DO Failsafe (Ch1 16)	68
9.2.4 DO Restart Mode (Ch1 16)	69
9.2.5 DO Switch Mode (Ch1 16)	69
9.2.6 DI Logic (Ch1 16)	70
9.2.7 DI Filter (Ch1 16)	70
9.2.8 DI Latch	71
9.2.9 DI Extension	72
9.2.10 Channel Mode (Ch1 16)	74
9.2.11 Port-Modus für Kanal A (Pin 4)	75
9.2.12 Port-Modus für Kanal B (Pin 2)	76
9.3 IO-Link Diagnoseeinstellungen	77
9.3.1 IO-Link Master Diagnosis	77
9.3.2 IO-Link Device Error	77
9.3.3 IO-Link Device Warning	78
9.3.4 IO-Link Device Notification	78
9.3.5 IO-Link Device Diagnosis Port 1 8	78

9.4 IO-Link Port 1 8 – Einstellungen	79
9.4.1 Ausgangsdatengröße (Output Data Size)	82
9.4.2 Eingangsdatengröße (Input Data Size)	83
9.4.3 Input Data Extension	83
9.4.4 Output Data Extension 9.4.4 Output Data Swapping Mode	83
9.4.5 Output Data Swapping Mode	84
9.4.6 Input Data Swapping Mode	84
9.4.7 Input Data Swapping Offset	85
9.4.8 IOL Failsafe	85
9.4.9 Port Mode	86
9.4.10 IO-Link Mode	86
9.4.11 Validation und Backup	87
9.4.12 Hersteller-ID (Vendor ID)	90
9.4.13 Geräte-ID (Device ID)	90
9.4.14 Zykluszeit (Cycle Time)	90
· · · · · <u> </u>	
10 Prozessdatenzuweisung	91
0.1 Consuming data image (Output)	92
10.1.1 Digitaler Output – Channel control	92
10.1.2 IO-Link Output-Daten	92
0.2 Producing data image (Input)	93
10.2.1 Digitaler Input – Channel status	93
10.2.2 Allgemeine Diagnose	94
10.2.3 Sensor-Diagnose	95
10.2.4 Actuator/U _L /U _{Aux} -Diagnose	95
10.2.5 IO-Link-Diagnose	96
10.2.6 IO-Link Input-Daten	97
0.3 Beispielanwendungen	100
10.3.1 Prozessdaten-Images – standardmäßige Konfiguration	100
10.3.2 Prozessdaten-Images mit modifizierten Datengrößen	103

11 Konfiguration und Betrieb mit Rockwe	II
Automation Studio 5000®	107
11.1 Grundlegende Inbetriebnahme	107
11.2 Add-On-Instruktion (AOI)	112
12 CIP-Objektklassen	122
12.1 EtherNet/IP-Objektklassen	122
12.1.1 Identity Object (0x01)	123
12.1.2 Assembly Object (0x04)	126
12.1.3 Discrete Input Point Object (0x08)	127
12.1.4 DLR Object (0x47)	128
12.1.5 QoS Object (0x48)	130
12.1.6 TCP/IP Object (0xF5)	132
12.1.7 Ethernet Link Object (0xF6)	134
12.1.8 LLDP Management Object (0x109)	137
12.2 Herstellerspezifische Objektklassen	139
12.2.1 General Settings Object (0xA0)	139
12.2.2 Channel Settings Object (0xA1)	141
12.2.3 IO-Link Diagnosis Settings Object (0xA2)	143
12.2.4 IO-Link Port Settings Object (0xA3)	144
12.2.5 IO-Link Failsafe Parameter Object (0xA4)	147
12.2.6 IO-Link Device Parameter Object (0xA5)	148
12.3 "Message"-Konfiguration in Rockwell Automation Studio 5000®	152
12.3.1 Get/Set attribute single	153
12.3.2 Get/Set ISDU data	154
13 Diagnosebearbeitung	156
13.1 Fehler der System-/Sensorversorgung	156
13.2 Fehler der Auxiliary-/ Aktuatorversorgung	157

13.3 Überlast/Kurzschluss der I/O-Port-Sensorversorgungsausgänge	158
13.4 Überlast/Kurzschluss der digitalen Ausgänge	159
13.5 IO-Link COM-Fehler	160
13.6 IO-Link Validation-Fehler	161
13.7 IO-Link Geräte-Diagnose	162
14 IloT-Funktionalität	163
14.1 MQTT	164
14.1.1 MQTT-Konfiguration	164
14.1.2 MQTT-Topics	167
14.1.2.1 Base-Topic	167
14.1.2.2 Publish-Topic	170
14.1.2.3 Command-Topic (MQTT Subscribe)	176
14.1.3 MQTT-Konfiguration - Schnellstart-Anleitung	180
14.1.3.1 MQTT-Konfiguration über JSON	180
14.2 OPC UA	182
14.2.1 OPC UA-Konfiguration	183
14.2.2 OPC UA Address-Space	185
14.2.3 OPC UA-Konfiguration - Schnellstart-Anleitung	186
14.2.3.1 OPC UA-Konfiguration über JSON	186
14.3 REST API	188
14.3.1 Standard Geräte-Information	190
14.3.2 Struktur	191
14.3.3 Konfiguration und Forcing	197
14.3.4 Auslesen und Schreiben von ISDU-Parametern	200
14.3.4.1 ISDU auslesen	200
14.3.4.2 ISDU schreiben	202
14.3.5 IODD-Datei hochladen und verarbeiten	204
14.3.6 Beispiel: ISDU auslesen	208
14.3.7 Beispiel: ISDU schreiben	208
14.4 CoAP-Server	209
14.4.1 CoAP-Konfiguration	209
14.4.2 REST API-Zugriff via CoAP	210
14.4.3 CoAP-Konfiguration - Schnellstart-Anleitung	214

14.4.3.1 CoAP-Konfiguration über JSON	214
14.5 Syslog	216
14.5.1 Syslog-Konfiguration	216
14.5.2 Syslog-Konfiguration - Schnellstart-Anleitung	220
14.5.2.1 Syslog-Konfiguration über JSON	220
14.6 Network Time Protocol (NTP)	222
14.6.1 NTP-Konfiguration	222
14.6.2 NTP-Konfiguration - Schnellstart-Anleitung	224
14.6.2.1 NTP-Konfiguration über JSON	224
15 Integrierter Webserver	226
15.1 LioN-X 0980 XSLVarianten	227
15.1.1 Status-Seite	227
15.1.2 Port-Seite	228
15.1.2.1 IODD-Upload	228
15.1.3 Systemseite	230
15.1.3.1 Lizenz	231
15.1.3.2 Konfiguration Upload/Download	231
15.1.3.3 IODD	234
15.1.3.4 Geräte-Reset	235
15.1.3.5 Auf Werkseinstellungen zurücksetzen	235
15.1.3.6 Firmware-Update	235
15.1.3.7 Systemdiagnose	236
15.1.3.8 HTTPS	237
15.1.3.9 HTTPS Zertifikat-Manager	237
15.1.4 Benutzerseite	237
15.1.5 Zertifikat erstellen – Beispiel	238
15.2 LioN-Xlight 0980 LSLVarianten	242
15.2.1 Systemseite	242
16 IODD	244
16.1 IO-Link Device-Parameter und ISDU-Anfragen	245

16.2 Web-GUI-Funktionen	245
16.2.1 Port Details-Seite	246
16.2.2 Parameter-Seite	248
16.2.3 IODD Management-Seite	249
17 Technische Daten	250
17.1 Allgemeines	251
17.2 EtherNet/IP Protokoll	252
17.3 Spannungsversorgung der Modulelektronik/Sensorik	253
17.4 Spannungsversorgung der Aktorik	254
17.4.1 IO-Link Class A-Geräte (U _L)	254
17.4.2 IO-Link Class A/B-Geräte (U _{AUX})	255
17.5 I/O-Ports Channel A (Pin 4)	256
17.5.1 Als digitaler Eingang konfiguriert, Ch. A (Pin 4)	256
17.5.2 Konfiguriert als Digitalausgang, Ch. A (Pin 4)	257
17.5.3 Konfiguriert als IO-Link-Port im COM-Modus, Ch. A	258
17.6 I/O-Ports Channel B (Pin 2)	259
17.6.1 Als digitaler Eingang konfiguriert, Ch. B (Pin 2)	259
17.6.2 Konfiguriert als Digitalausgang, Ch. B (Pin 2)	260
17.7 LEDs	262
17.8 Datenübertragungszeiten	265
18 Zuhehör	267

1 Zu diesem Handbuch

1.1 Allgemeine Informationen

Lesen Sie die Montage- und Betriebsanleitung auf den folgenden Seiten sorgfältig, bevor Sie die Module in Betrieb nehmen. Bewahren Sie die Informationen an einem Ort auf, der für alle Benutzer zugänglich ist.

Die in diesem Dokument verwendeten Texte, Abbildungen, Diagramme und Beispiele dienen ausschließlich der Erläuterung zur Bedienung und Anwendung der Module.

Bei weitergehenden Fragen zur Installation und Inbetriebnahme der Geräte sprechen Sie uns bitte an.

Belden Deutschland GmbH Lumberg Automation™ Im Gewerbepark 2 D-58579 Schalksmühle Deutschland

https://lumberg-automation-support.belden.com

https://belden.com

https://catalog.belden.com

Belden Deutschland GmbH – Lumberg Automation™ – behält sich vor, jederzeit technische Änderungen oder Änderungen dieses Dokumentes ohne besondere Hinweise vorzunehmen.

1.2 Erläuterung der Symbolik

1.2.1 Verwendung von Gefahrenhinweisen

Gefahrenhinweise sind wie folgt gekennzeichnet:

Gefahr: Bedeutet, dass Tod, schwere Körperverletzung oder erheblicher Sachschaden eintreten wird, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Warnung: Bedeutet, dass Tod, schwere Körperverletzung oder erheblicher Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Vorsicht: Bedeutet, dass eine leichte Körperverletzung oder ein Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

1.2.2 Verwendung von Hinweisen

Hinweise sind wie folgt dargestellt:

Achtung: Ist eine wichtige Information über das Produkt, die Handhabung des Produktes oder den jeweiligen Teil der Dokumentation, auf den besonders aufmerksam gemacht werden soll.

1.3 Versionsinformationen

Version	Erstellt	Änderungen
1.0	03/2021	
1.1	04/2021	
1.2	05/2021	
1.3	11/2021	Neue Kapitel: 10.3 / 10.3.1 / 10.3.2 / 11.1 / 11.2 Kap. 4.3 Kap. 9.4: Standardwerte Kap. 10.x: Byte-Umfang Kap. 12.2.x: Instanzen
2.0	03/2022	Neue Kapitel: Kap. 12.1.8 ("LLDP") Kap. 14.6 ("NTP") Kap. 16 ("IODD") Neue Gerätevarianten: 0980 XSL 3912-121-007D-01F 0980 XSL 3913-121-007D-01F
2.1	06/2022	Geräteinformation für Variante 0980 XSL 3913-121-007D-01F temporär ausgeklammert (voraussichtliche Auslieferung 2023)
2.2	10/2022	Geräteinformation für Variante 0980 XSL 3913-121-007D-01F hinzugefügt. Kap. 7.4: LED-Beschreibung
2.3	12/2022	Kap. 9.1 ("External configuration lock")
2.4	04/2023	Kap. 12.2.6: Beschreibung "Instance 1 n*", neuer Inhalt Kap. 12.3: überarbeitet, neue Unterkapitel 12.3.1 + 12.3.2
2.5	07/2023	Warnhinweis in Kap. Drehkodierschalter einstellen auf Seite 50
2.6	10/2023	Neue Funktion "HTTPS" hinzugefügt (diverse Kapitel ergänzt). Neue Gerätevarianten: 0980 XSL 3912-121-027D-01F 0980 XSL 3913-121-027D-01F

Version	Erstellt	Änderungen
3.0	08/2024	Kap. 8.1: Assembly "147" hinzugefügt
		Kap. 8.2: Tabelle aktualisiert für "IO-Link Min"
		Kap. 9.1: Tabelle überarbeitet, Feature "Digital Output Control" entfernt
		Kap. 9.2: Tabelle überarbeitet, neue Einstelloptionen hinzugefügt (Unterkapitel)
		Kap. 9.4: Tabelle überarbeitet, neue Einstelloption "IO-Link Mode" hinzugefügt
		Kap. 11.2: neuer Hinweis "Achtung"
		Kap. 14: neue Info "Achtung"
		Kap. 14.1: neue Info "Achtung"
		Kap. 14.2: neue Info "Achtung"
		Kap. 14.3.3: neue Zeilen unter "Port mode object"
		Kap. 15.1.2: neuer Screenshot
		Kap. 15.1.3: neuer Screenshot, neue Funktionen (siehe Unterkapitel)
		Neue Kapitel:
		IO-Link Parameter Omron (Exclusive Owner) auf Seite 58
		IO-Link Parameter Min (Exclusive Owner) auf Seite 59
		General Settings (Parameter) auf Seite 64
		DI Latch auf Seite 71
		DI Extension auf Seite 72
		Port-Modus für Kanal A (Pin 4) auf Seite 75
		Port-Modus für Kanal B (Pin 2) auf Seite 76
		IO-Link Mode auf Seite 86
		IODD-Datei hochladen und verarbeiten auf Seite 204
		IODD-Upload auf Seite 228

Tabelle 1: Übersicht der Handbuch-Revisionen

2 Sicherheitshinweise

2.1 Bestimmungsgemäßer Gebrauch

Die in diesem Handbuch beschriebenen Produkte dienen als dezentrale IO-Link Master in einem Industrial-Ethernet-Netzwerk.

Wir entwickeln, fertigen, prüfen und dokumentieren unsere Produkte unter Beachtung der Sicherheitsnormen. Bei Beachtung der für Projektierung, Montage und bestimmungsgemäßen Betrieb beschriebenen Handhabungsvorschriften und sicherheitstechnischen Anweisungen gehen von den Produkten im Normalfall keine Gefahren für Personen oder Sachen aus.

Die Module erfüllen die Anforderungen der EMV-Richtlinie (2014/30/EU) und der Niederspannungsrichtlinie (2014/35/EU).

Ausgelegt sind die IO-Link Master für den Einsatz im Industriebereich. Die industrielle Umgebung ist dadurch gekennzeichnet, dass Verbraucher nicht direkt an das öffentliche Niederspannungsnetz angeschlossen sind. Für den Einsatz im Wohnbereich oder in Geschäfts- und Gewerbebereichen sind zusätzliche Maßnahmen erforderlich.

Achtung: Diese Einrichtung kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Gegenmaßnahmen durchzuführen.

Die einwandfreie und sichere Funktion des Produkts erfordert einen sachgemäßen Transport, eine sachgemäße Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung.

Für den bestimmungsgemäßen Betrieb der IO-Link Master ist ein vollständig montiertes Gerätegehäuse notwendig. Schließen Sie an die IO-Link Master ausschließlich Geräte an, welche die Anforderungen der EN 61558-2-4 und EN 61558-2-6 erfüllen.

Beachten Sie bei der Projektierung, Installation, Inbetriebnahme, Wartung und Prüfung der Geräte die für den spezifischen Anwendungsfall gültigen Sicherheits- und Unfallverhütungsvorschriften.

Installieren Sie ausschließlich Leitungen und Zubehör, die den Anforderungen und Vorschriften für Sicherheit, elektromagnetische Verträglichkeit und ggf. Telekommunikations-Endgeräteeinrichtungen sowie den Spezifikationsangaben entsprechen. Informationen darüber, welche Leitungen und welches Zubehör zur Installation zugelassen sind, erhalten Sie in den Beschreibungen dieses Handbuchs oder von der Belden Deutschland GmbH – Lumberg Automation™.

2.2 Qualifiziertes Personal

Zur Projektierung, Installation, Inbetriebnahme, Wartung und Prüfung der Geräte ist ausschließlich eine anerkannt ausgebildete Elektrofachkraft befugt, die mit den Sicherheitsstandards der Automatisierungstechnik vertraut ist.

Die Anforderungen an das Personal richten sich nach den Anforderungsprofilen, die vom ZVEI, VDMA oder vergleichbaren Organisationen beschrieben sind.

Ausschließlich Elektrofachkräfte, die den Inhalt der gesamten bereitgestellten Gerätedokumentation kennen, sind befugt, die beschriebenen Geräte zu installieren und zu warten. Dies sind Personen, die

- ▶ aufgrund ihrer fachlichen Ausbildung, Kenntnis und Erfahrung sowie Kenntnis der einschlägigen Normen die auszuführenden Arbeiten beurteilen und mögliche Gefahren erkennen können oder
- ▶ aufgrund einer mehrjährigen Tätigkeit auf vergleichbarem Gebiet den gleichen Kenntnisstand wie nach einer fachlichen Ausbildung haben.

Eingriffe in die Hard- und Software der Produkte, die den Umfang dieses Handbuchs überschreiten, darf ausschließlich Belden Deutschland GmbH – Lumberg Automation™ – vornehmen.

Warnung: Unqualifizierte Eingriffe in die Hard- oder Software oder die Nichtbeachtung der in diesem Dokument gegebenen Warnhinweise können schwere Personen- oder Sachschäden zur Folge haben.

Achtung: Die Belden Deutschland GmbH übernimmt keinerlei Haftung für jegliche Schäden, die durch unqualifiziertes Personal oder unsachgemäßen Gebrauch entstehen. Dadurch erlischt die Garantie automatisch.

3 Bezeichnungen und Synonyme

AOI	Add-On Instruction
API	Application Programming Interface
BF	Bus-Fault-LED
Big Endian	Datenformat mit High-B an erster Stelle (PROFINET und IO-Link)
BUI	Back-Up Inconsistency (EIP-Diagnose)
CC	CC-Link IE Field
C/Q	I/O-Port Pin 4-Modus, IO-Link communication/switching signal
Ch. A	Channel A (Pin 4) des I/O-Ports
Ch. B	Channel B (Pin 2) des I/O-Ports
CIP	Common Industrial Protocol (Medien-unabhängiges Protokoll)
CIP Safety™	Common Industrial Protocol for Safety applications, CIP Safety™ ist eine registrierte Handelsmarke durch ODVA
Class A	IO-Link Port-Spezifikation (Class A)
Class B	IO-Link Port-Spezifikation (Class B)
CoAP	Constrained Application Protocol
CSP+	Control & Communication System Profile Plus
DAT	Device Acknowledgement Time
DCP	Discovery and Configuration Protocol
DevCom	Device Comunicating (EIP-Diagnose)
DevErr	Device Error (EIP-Diagnose)
DI	Digital Input
DIA	Diagnose-LED
DO	Digital Output
DIO	Digital Input/Output
DTO	Device Temperature Overrun (EIP-Diagnose)
DTU	Devie Temperature Underrun (EIP-Diagnose)

DUT	Device under test
EIP	EtherNet/IP™ ist eine registrierte Handelsmarke durch ODVA
ERP	Enterprise Resource Planning system
ETH	ETHERNET
FE	Funktionserde
FME	Force Mode Enabled (EIP-Diagnose)
FS	Functional Safety
FSU	Fast Start-Up
GSDML	General Station Description Markup Language
High-B	High-Byte
HTTPS	Hyper Text Transfer Protocol Secure (sicheres Hypertext- Übertragungsprotokoll)
ICE	IO-Link port COM Error (EIP-Diagnose)
ICT	Invalid Cycle Time (EIP-Diagnose)
IDE	IO-Link port Device Error (EIP-Diagnose)
IDN	IO-Link port Device Notification (EIP-Diagnose)
IDW	IO-Link port Device Warning (EIP-Diagnose)
ПоТ	Industrial Internet of Things
ILE	Input process data Length Error (EIP-Diagnose)
IME	Internal Module Error (EIP-Diagnose)
I/O	Input / Output
I/O-Port	X1 X8
I/O-Port Pin 2	Channel B der I/O-Ports
I/O-Port Pin 4 (C/Q)	Channel A der I/O-Ports
IODD	I/O Device Description
IOL oder IO-L	IO-Link
I/Q	I/O-Port Pin 2-Modus, Digital Input/Switching-Signal
ISDU	Indexed Service Data Unit
IVE	IO-Link port Validation Error (EIP-Diagnose)
I&M	Identification & Maintenance

JSON	JavaScript Object Notation (Plattform-unabhängiges Datenformat)
L+	I/O-Port Pin 1, Sensor-Spannungsversorgung
LioN-X 60	60 mm breite LioN-X-Gerätevariante
Little Endian	Datenformat mit Low-B an erster Stelle (EtherNet/IP)
LLDP	Link Layer Discovery Protocol
Low-B	Low-Byte
LSB	Least Significant Bit
LVA	Low Voltage Actuator Supply (EIP-Diagnose)
LVS	Low Voltage System/Sensor Supply (EIP-Diagnose)
MIB	Management Information Base
MP	Multiprotokoll: PROFINET + EtherNet/IP + EtherCAT® + Modbus TCP (+ CC-Link IE Field Basic)
MQTT	Message Queuing Telemetry Transport (offenes Netzwerk- Protokoll)
MSB	Most Significant Bit
M12	Metrisches Gewinde nach DIN 13-1 mit 12 mm Durchmesser
NTP	Network Time Protocol
OFDT	One Fault Delay Time
OLE	Output process data Length Error (EIP-Diagnose)
OPC UA	Open Platform Communications Unified Architecture (Plattform-unabhängige, Service-orientierte Architektur)
PFH	Probability of dangerous Failure per Hour [h -1] (= Wahrscheinlichkeit gefährlicher Fehler pro Stunde [h -1]).
PD	Process Data
PDCT	Port and Device Configuration Tool
PLC / SPS	Programmable Logic Controller (= Speicherprogrammierbare Steuerung SPS)
PN	PROFINET
PWR	Power
Qualifier	Validität eines Prozesswertes. Valide = "1"
REST	REpresentational State Transfer
RFC	Request for Comments

RPI	Requested Packet Interval
RWr	Word-Dateneingang aus Sicht der Master-Station (CC-Link)
RWw	Word-Datenausgang aus Sicht der Master-Station (CC-Link)
RX	Bit-Dateneingang aus Sicht der Master-Station (CC-Link)
RY	Bit-Datenausgang aus Sicht der Master-Station (CC-Link)
SCA	Short Circuit Actuator/U _L /U _{AUX} (EIP-Diagnose)
SCS	Short Circuit Sensor (EIP-Diagnose)
SFRT	Safety Function Response Time (Reaktionszeit der Safety-Funktion)
SIO mode	Standard Input-Output-Modus
SLMP	Seamless Message Protocol
SNMP	Simple Network Management Protocol
SP	Single-Protokoll (PROFINET, EtherNet/IP, EtherCAT®, Modbus TCP oder CC-Link IE Field Basic)
SPE	Startup Parameterization Error (EIP-Diagnose)
T-A	Test Channel A
Т-В	Test Channel B
U _{AUX}	U _{Auxiliary} , Versorgungsspannung für den Lastkreis (Aktuatorversorgung auf den Class B-Ports des Class A/B IO- Link Master)
UDP	User Datagram Protocol
UDT	User-Defined Data Types
UINT8	Byte in der PLC (IB, QB)
UINT16	Unsigned Integer mit 16 Bits oder Wort in der PLC (IW, QW)
U _L	U _{Load} , Versorgungsspannung für den Lastkreis (Aktuatorversorgung auf Class A IO-Link Master)
UL	Underwriters Laboratories Inc. (Zertifizierungsstelle)
UTC	Koordinierte Weltzeit (Temps Universel Coordonné)
WCDT	Worst Case Delay Time

Tabelle 2: Bezeichnungen und Synonyme

4 Systembeschreibung

Die LioN-Module (Lumberg Automation™ Input/Output Network) fungieren als Schnittstelle in einem industriellen Ethernet-System: Eine zentrale Steuerung auf Management-Ebene kann mit der dezentralen Sensorik und Aktorik auf Feldebene kommunizieren. Durch die mit den LioN-Modulen realisierbaren Linien- oder Ring-Topologien ist nicht nur eine zuverlässige Datenkommunikation, sondern auch eine deutliche Reduzierung der Verdrahtung und damit der Kosten für Installation und Wartung möglich. Zudem besteht die Möglichkeit der einfachen und schnellen Erweiterung.

4.1 Über LioN-X

Die LioN-X-Gerätevarianten übertragen standard Eingangs-, Ausgangs- oder IO-Link-Signale von Sensoren & Aktoren in ein Industrial-Ethernet-Protokoll (PROFINET, EtherNet/IP, EtherCAT®, Modbus TCP, CC-Link IE Field Basic) und/oder in ein Cloud-basiertes Protokoll (REST API, OPC UA, MQTT). Zum ersten Mal ist nun Syslog an Bord. Das robuste 8-Port-Gehäusedesign erlaubt den Einsatz auch in rauen Umgebungen, in denen z.B. Schweißfunkenbeständigkeit, hohe Temperaturbereiche oder die Schutzklasse IP67 & IP69K erforderlich sind.

Nutzen Sie alle Vorteile der Lumberg Automation™-Produktlösung, indem Sie zusätzlich das Konfigurationstool *LioN-Management Suite* von www.belden.com herunterladen, um beispielsweise eine schnelle und einfache Parametrierung der angeschlossenen IO-Link-Geräte über den eingebetteten IODD-Interpreter zu ermöglichen.

4.2 Gerätevarianten

Folgende Varianten sind in der LioN-X- und der LioN-Xlight-Familie erhältlich:

Artikelnummer	Produktbezeichnung	Beschreibung	I/O- Portfunktionalität
935700001	0980 XSL 3912-121-007D-00F	LioN-X M12-60 mm, IO-Link Master Multiprotokoll (PN, EIP, EC, MB) Security	8 x IO-Link Class A
935700002	0980 XSL 3912-121-007D-01F	LioN-X M12-60 mm, IO-Link Master Multiprotokoll (PN, EIP, EC, MB, CC) Security	8 x IO-Link Class A
935710001	0980 XSL 3912-121-027D-01F	LioN-X M12-60 mm, IO-Link Master Multiprotokoll (PN, EIP, EC, MB, CC) Security, HTTPS	8 x IO-Link Class A
935703001	0980 XSL 3913-121-007D-01F	LioN-X M12-60 mm, IO-Link Master Multiprotokoll (PN, EIP, EC, MB, CC) Security	8 x IO-Link Class A/B Mixmodul
935711001	0980 XSL 3913-121-027D-01F	LioN-X M12-60 mm, IO-Link Master Multiprotokoll (PN, EIP, EC, MB, CC) Security, HTTPS	8 x IO-Link Class A/B Mixmodul
935701001	0980 LSL 3011-121-0006-001	LioN-Xlight M12-60 mm, IO-Link Master PROFINET	8 x IO-Link Class A
935702001	0980 LSL 3010-121-0006-001	LioN-Xlight M12-60 mm, IO-Link Master PROFINET	4 x IO-Link Class A + 8 x DI

Artikelnummer	Produktbezeichnung	Beschreibung	I/O- Portfunktionalität
935701002	0980 LSL 3111-121-0006-002	LioN-Xlight M12-60 mm, IO-Link Master EtherNet/IP	8 x IO-Link Class A
935702002	0980 LSL 3110-121-0006-002	LioN-Xlight M12-60 mm, IO-Link Master EtherNet/IP	4 x IO-Link Class A + 8 x DI
935701003	0980 LSL 3211-121-0006-004	LioN-Xlight M12-60 mm, IO-Link Master EtherCAT®	8 x IO-Link Class A
935702003	0980 LSL 3210-121-0006-004	LioN-Xlight M12-60 mm, IO-Link Master EtherCAT®	4 x IO-Link Class A + 8 x DI
935701004	0980 LSL 3311-121-0006-008	LioN-Xlight M12-60 mm, IO-Link Master Modbus TCP	8 x IO-Link Class A
935702004	0980 LSL 3310-121-0006-008	LioN-Xlight M12-60 mm, IO-Link Master Modbus TCP	4 x IO-Link Class A + 8 x DI
935701005	0980 LSL 3411-121-0006-010	LioN-Xlight M12-60 mm, IO-Link Master CC-Link IE Field Basic	8 x IO-Link Class A
935702005	0980 LSL 3410-121-0006-010	LioN-Xlight M12-60 mm, IO-Link Master CC-Link IE Field Basic	4 x IO-Link Class A + 8 x DI

Tabelle 3: Übersicht der LioN-X- und LioN-Xlight-Varianten

4.3 I/O-Port-Übersicht

Die folgenden Tabellen zeigen die Hauptunterschiede in den I/O-Ports innerhalb der LioN-X IO-Link Master-Familie. Pin 4 und Pin 2 der I/O-Ports können teilweise als IO-Link, Digitaler Eingang oder Digitaler Ausgang konfiguriert werden.

LioN-X Class A IO-Link-Ports

Geräte- variante	Port	Pin 1 U _S		Pin 4	Pin 2 /	Pin 2 / Ch. B (I/Q)		
	Info:	_	Class A	Type 1	Supply by U _S ¹⁾	Supply by U _L ²⁾	Type 1	Supply by U _L ²⁾
	X8:	Out (4 A)	IOL	DI	DO (0,5 A)	DO (2 A)	DI	DO (2 A)
	X7:	Out (4 A)	IOL	DI	DO (0,5 A)	DO (2 A)	DI	DO (2 A)
0980 XSL	X6:	Out (4 A)	IOL	DI	DO (0,5 A)	DO (2 A)	DI	DO (2 A)
3x12	X5:	Out (4 A)	IOL	DI	DO (0,5 A)	DO (2 A)	DI	DO (2 A)
	X4:	Out (4 A)	IOL	DI	DO (0,5 A)	DO (2 A)	DI	DO (2 A)
	X3:	Out (4 A)	IOL	DI	DO (0,5 A)	DO (2 A)	DI	DO (2 A)
	X2:	Out (4 A)	IOL	DI	DO (0,5 A)	DO (2 A)	DI	DO (2 A)
	X1:	Out (4 A)	IOL	DI	DO (0,5 A)	DO (2 A)	DI	DO (2 A)

Tabelle 4: Port-Konfiguration von 0980 XSL 3x12...-Varianten

¹⁾ DO Switch-Modus konfiguriert als "Push-Pull" (Beschreibung in den Konfigurations-Kapiteln).

²⁾ DO Switch-Modus konfiguriert als "High-Side" (Beschreibung in den Konfigurations-Kapiteln).

LioN-X Class A/B IO-Link-Ports

Geräte- variante	Port	Pin 1 U _S	Р		Pir	n 2 / Ch. B	(I/Q)		
	Info:	-	4 x Class A	Type 1	Supply	Supply	Type 1	Supply	Supply
			4 x Class B		by U _S ¹⁾	by U _S ²⁾		by U _S ¹⁾	by U _{Aux}
	X8:	Out (4 A)	IOL (Class B)	DI	DO (0.5 A)	DO (2 A)	-	-	DO/Pwr (2 A)
	X7:	Out (4 A)	IOL (Class B)	DI	DO (0.5 A)	DO (2 A)	-	-	DO/Pwr (2 A)
0980	X6:	Out (4 A)	IOL (Class B)	DI	DO (0.5 A)	DO (2 A)	_	-	DO/Pwr (2 A)
XSL 3x13	X5:	Out (4 A)	IOL (Class B)	DI	DO (0.5 A)	DO (2 A)	_	-	DO/Pwr (2 A)
	X4:	Out (4 A)	IOL (Class A)	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)	_
	Х3:	Out (4 A)	IOL (Class A)	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)	_
	X2:	Out (4 A)	IOL (Class A)	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)	_
	X1:	Out (4 A)	IOL (Class A)	DI	DO (0.5 A)	DO (2 A)	DI	DO (2 A)	_

Tabelle 5: Port-Konfiguration von 0980 XSL 3x13...-Varianten

¹⁾ DO Switch-Modus konfiguriert als "Push-Pull" (Beschreibung in den Konfigurations-Kapiteln).

 $^{^{2)}}$ DO Switch-Modus konfiguriert als "High-Side" (Beschreibung in den Konfigurations-Kapiteln).

LioN-Xlight Class A IO-Link-Ports

Geräte- variante	Port	Pin 1 U _S	ı	Pin 2 / Ch. B (I/Q)		
	Info:	_	Class A	Type 1	Supply by U _S ¹⁾	Type 1
	X8:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI
	X7:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI
	X6:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI
0980 LSL 3x11	X5:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI
	X4:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI
	Х3:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI
	X2:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI
	X1:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI

Tabelle 6: Port-Konfiguration von 0980 LSL 3x11...-Varianten

Geräte- variante	Port	Pin 1 U _S	ı	Pin 2 / Ch. B (I/Q)		
	Info:	-	Class A	Type 1	Supply by U _S ¹⁾	Type 1
	X8:	Out (0,7 A)	-	DI	-	DI
0980 LSL 3x10	X7:	Out (0,7 A)	_	DI	-	DI
	X6:	Out (0,7 A)	_	DI	-	DI
	X5:	Out (0,7 A)	_	DI	_	DI
	X4:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI
	X3:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI
	X2:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI
	X1:	Out (2 A)	IOL	DI	DO (0,5 A*)	DI

Tabelle 7: Port-Konfiguration von 0980 LSL 3x10...-Varianten

¹⁾ Mit DO Switch-Modus konfiguriert als "Push-Pull" (siehe Beschreibung in den Konfigurations-Kapiteln).

^{*} Für **UL-Anwendungen**: Max. 0,25 A DO.

5 Übersicht der Produktmerkmale

5.1 EtherNet/IP Produktmerkmale

Datenverbindung

Als Anschlussmöglichkeit bietet LioN-X den weit verbreiteten M12-Steckverbinder mit D-Kodierung für das EtherNet/IP-Netz.

Darüber hinaus sind die Steckverbinder farbkodiert, um eine Verwechslung der Ports zu verhindern.

Übertragungsraten

Mit einer Übertragungsrate von bis zu 10/100 MBit/s sind die EtherNet/IP-Geräte in der Lage, sowohl die schnelle Übertragung von I/O-Daten als auch die Übertragung von größeren Datenmengen zu bewältigen.

EtherNet/IP Adapter Device

Die LioN-X und LioN-Xlight IO-Link Master-Varianten unterstützen das EtherNet/IP-Protokoll. Dadurch wird die Übertragung von zeitkritischen Prozessdaten mittels Echtzeitkommunikation zwischen den Netzkomponenten ermöglicht.

ODVA CIP-Spezifikation V3.27

Die LioN-X und LioN-Xlight IO-Link Master-Varianten erfüllen die ODVA CIP-Spezifikation V3.27.

Integrierter Switch

Der integrierte Ethernet-Switch verfügt über 2 EtherNet/IP-Ports und erlaubt somit den Aufbau einer Linien- oder Ringtopologie für das EtherNet/IP-Netz.

DHCP/BOOTP

Das unterstützte Dynamic-Host-Configuration-Protocol (DHCP) und das Bootstrap-Protocol (BOOTP) bieten Mechanismen für die automatische Übernahme einer IP-Adresse von einem Server, der die Geräte verwaltet.

Device Level Ring

Der zusätzlich implementierte Device Level Ring (DLR) ermöglicht den Aufbau einer hochverfügbaren Netzinfrastruktur von bis zu 50 DLR-Ringknoten. Wird eine Verbindung unterbrochen, schalten die LioN-X-Geräte sofort auf ein alternatives Ringsegment um und gewährleisten so einen unterbrechungsfreien Betrieb. Diese DLR-Ringknoten sind nach der EtherNet/IP-Spezifikation "beacon-based".

SNMP

Das SNMPv1-Protokoll regelt die Überwachung von Netzkomponenten und die Kommunikation zwischen Master und Device.

Diagnosedaten

Die Geräte unterstützen Diagnose-Flags und erweiterte Diagnosedaten, die an die I/O-Daten angehängt werden können.

EDS-gestützte Konfiguration und Parametrierung der I/O-Ports

Sie haben die Möglichkeit, die I/O-Ports der Master-Geräte mittels EDS zu konfigurieren und zu parametrieren.

5.2 I/O-Port Merkmale

IO-Link-Spezifikation

LioN-X ist bereit für IO-Link-Spezifikation v1.1.3.

8 x IO-Link Master-Ports

Abhängig von der Gerätevariante besitzt das Gerät 4 IO-Link Class A-Ports, 4 IO-Link Class A-Ports und 4 IO-Link Class B-Ports, oder 8 IO-Link Class A-Ports mit zusätzlichem digitalen Eingang und optionalem Ausgang (0980 XSL 3x13...-Varianten) an Pin 2 des I/O-Portes. Weitere Informationen entnehmen Sie dem Kapitel I/O-Port-Übersicht auf Seite 24.

Warnung: Bei gleichzeitiger Verwendung von Geräten mit galvanischer Trennung und Geräten ohne galvanische Trennung innerhalb desselben Systems wird die galvanische Trennung aller angeschlossenen Geräte aufgehoben.

Anschluss der IO-Link-Ports

Die Geräteserie bietet als Anschlussmöglichkeiten der IO-Link-Ports den 5poligen M12-Steckverbinder (Pin 5 nicht belegt bei IO-Link Class A-Ports).

Validation & Backup

Die Validation-&-Backup-Funktion (Parameterspeicher) prüft, ob das richtige Gerät angeschlossen wurde und speichert die Parameter des IO-Link Device. Dadurch ermöglicht es Ihnen die Funktion, einen einfachen Austausch des IO-Link Device vorzunehmen.

Dies ist erst ab der IO-Link-Spezifikation V1.1 und nur dann möglich, wenn das IO-Link Device **und** der IO-Link Master die Funktion unterstützen.

IO-Link Device-Parametrierung

IO-Link Device Parametrierung in EtherNet/IP über herstellerspezifische IO-Link Device Parameter-Objektklasse und ISDU-Dienste "Read/Write".

LED

Sie sehen den Status des jeweiligen Ports über die Farbe der zugehörigen LED und deren Blinkverhalten. Erläuterungen zu den Bedeutungen der LED-Farben entnehmen Sie dem Abschnitt LEDs auf Seite 262.

5.3 Integrierter Webserver

Anzeige der Netzparameter

Lassen Sie sich Netzparameter wie IP-Adresse, Subnetz-Maske und Gateway anzeigen.

Anzeige der Diagnostik

Sehen Sie die Diagnosedaten über den integrierten Webserver ein.

Benutzerverwaltung

Verwalten Sie über den integrierten Webserver bequem alle Benutzer.

IO-Link Device-Parameter

Lesen und Schreiben von IO-Link Device-Parametern wird unterstützt. Der Systembefehl Store parameters wird benötigt, um nach dem Schreiben der Parameter die geänderten Parameter in den IO-Link Master Backup-Speicher zu übernehmen, sofern dieser aktiviert wurde.

HTTPS

LioN-X unterstützt diverse Sichercheitsmechanismen (siehe auch Sicherheitsmerkmale Seite 31). Ein Teil davon auf **HTTPS** (ausschließlich verfügbar für die Gerätevarianten 0980 XSL 3912-121-027D-01F und 0980 XSL 3913-121-027D-01F), was die verschlüsselungsbasierte sichere Kommunikation beim Zugriff auf Web-Seiten ermöglicht.

5.4 Sicherheitsmerkmale

Firmware-Signatur

Die offiziellen Firmware-Update-Pakete beinhalten eine Signatur, die dabei hilft, das System vor manipulierten Firmware-Updates zu schützen.

Syslog

Die LioN-X Multiprotokoll-Varianten unterstützen die Nachverfolgbarkeit von Systemmeldung durch die zentrale Verwaltung und Speicherung via Syslog.

User-Manager

Der Webserver bietet einen User-Manager, der Ihnen dabei hilft, das Web-Interface gegen unerlaubte Zugriffe zu schützen. Sie können die Benutzer in Gruppen mit unterschiedlichen Zugriffs-Leveln wie "Admin" oder "Write" verwalten.

Standard-Benutzereinstellungen:

User: admin

Password: private

Achtung: Passen Sie die Standard-Benutzereinstellungen an, um dabei zu helfen, das Gerät gegen unerlaubte Zugriffe zu schützen.

5.5 Sonstige Merkmale

Schnittstellenschutz

Die Geräte verfügen über einen Verpol-, Kurzschluss- und Überlastungsschutz für alle Schnittstellen.

Für weitere Details, beachten Sie den Abschnitt Port-Belegungen auf Seite 42.

Failsafe

Die Geräte unterstützen eine Fail-Safe-Funktion. Damit haben Sie die Möglichkeit, das Verhalten jedes einzelnen als Ausgang konfigurierten Kanals im Falle von ungültigen SPS-Daten (beispielsweise SPS in STOP) oder bei Verlust der SPS-Kommunikation festzulegen.

Industrial Internet of Things

LioN-X ist bereit für Industrie 4.0 und unterstützt die Integration in IIoT-Netzwerke über REST API und die IIoT-relevanten Protokolle MQTT, OPC UA und CoAP.

Farbkodierte Steckverbinder

Die farbkodierten Anschlüsse unterstützen Sie dabei, Verwechslungen bei der Verkabelung zu vermeiden.

Schutzarten: IP65 / IP67 / IP69K

Die IP-Schutzart beschreibt mögliche Umwelteinflüsse, denen die Geräte bedenkenlos ausgesetzt werden können, ohne dabei beschädigt zu werden oder für Anwender eine Gefahr darzustellen.

Die komplette LioN-X-Familie bietet IP65, IP67 und IP69K.

6 Montage und Verdrahtung

6.1 Allgemeine Informationen

Montieren Sie das Gerät mit 2 Schrauben (M4 x 25/30) auf einer ebenen Fläche. Das hierfür erforderliche Drehmoment beträgt 1 Nm. Nutzen Sie bei allen Befestigungsarten Unterlegscheiben nach DIN 125.

Achtung: Für die Ableitung von Störströmen und die EMV-Festigkeit verfügen die Geräte über einen Erdanschluss mit einem M4-Gewinde. Dieser ist mit dem Symbol für Erdung und der Bezeichnung "FE" gekennzeichnet.

Achtung: Verbinden Sie das Gerät mit der Bezugserde mittels einer Verbindung von geringer Impedanz. Im Falle einer geerdeten Montagefläche können Sie die Verbindung direkt über die Befestigungsschrauben herstellen.

Achtung: Verwenden Sie bei nicht geerdeter Montagefläche ein Masseband oder eine geeignete FE-Leitung (FE = Funktionserde). Schließen Sie das Masseband oder die FE-Leitung durch eine M4-Schraube am Erdungspunkt an und unterlegen Sie die Befestigungsschraube, wenn möglich, mit einer Unterleg- und Zahnscheibe.

6.2 Äußere Abmessungen

6.2.1 LioN-X Multiprotokoll-Varianten

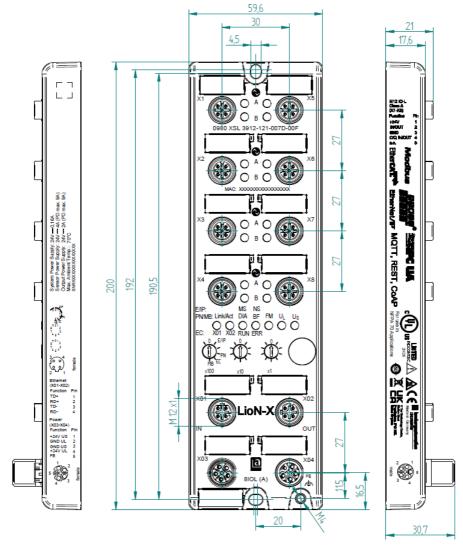


Abb. 1: 0980 XSL 3912-121-007D-00F

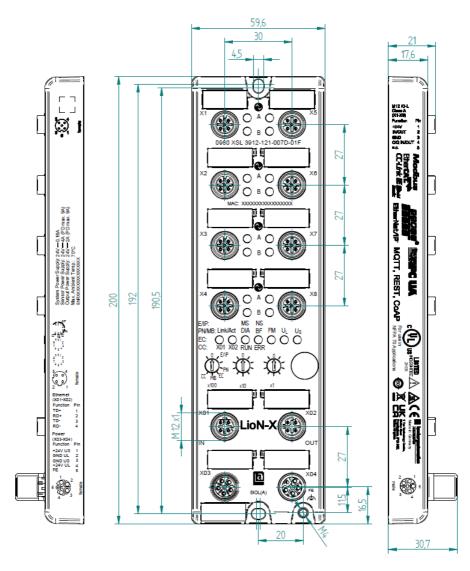


Abb. 2: 0980 XSL 3912-121-007D-01F

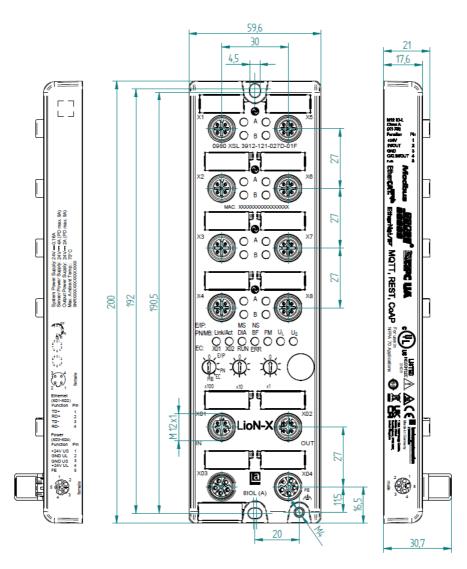


Abb. 3: 0980 XSL 3912-121-027D-01F

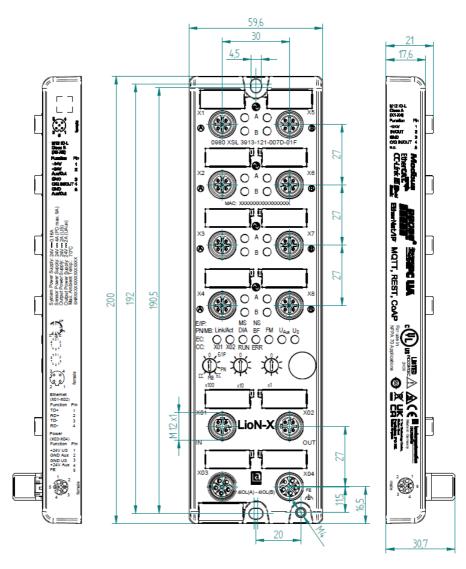


Abb. 4: 0980 XSL 3913-121-007D-01F

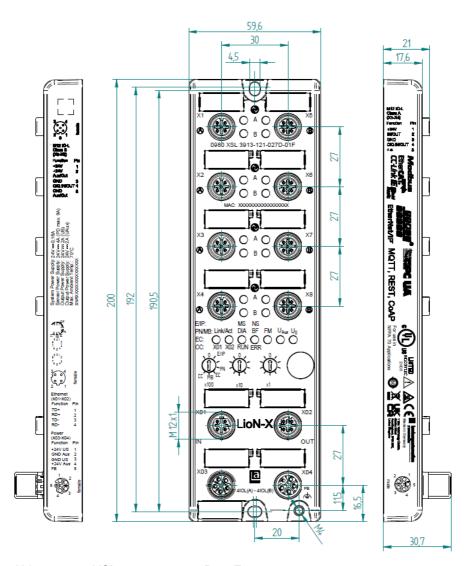


Abb. 5: 0980 XSL 3913-121-027D-01F

6.2.2 LioN-Xlight Varianten mit EtherNet/IP

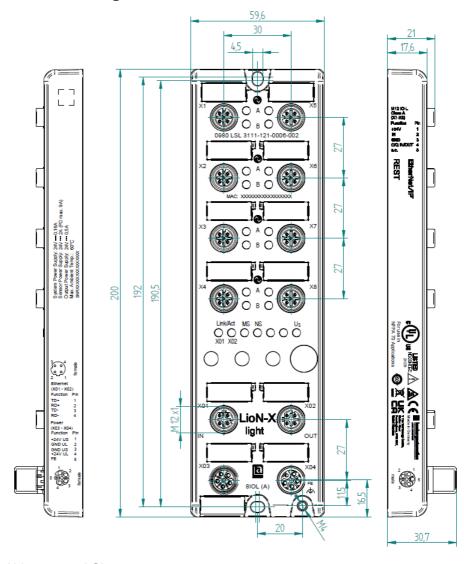


Abb. 6: 0980 LSL 3111-121-0006-002

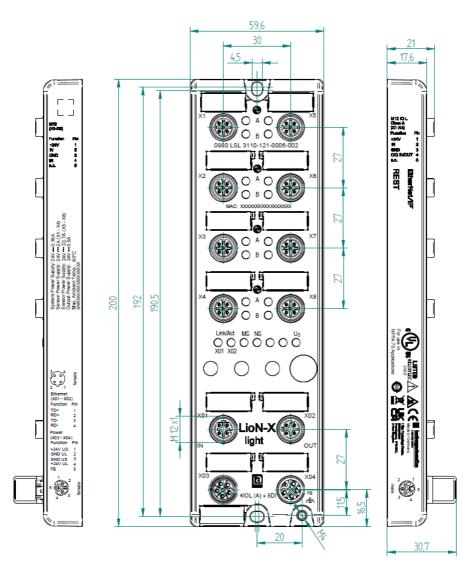


Abb. 7: 0980 LSL 3110-121-0006-002

6.2.3 Hinweise

Achtung:

Für **UL-Anwendungen**, schließen Sie Geräte nur unter der Verwendung eines UL-zertifizierten Kabels mit geeigneten Bewertungen an (CYJV oder PVVA). Um die Steuerung zu programmieren, nehmen Sie die Herstellerinformationen zur Hand, und verwenden Sie ausschließlich geeignetes Zubehör.

Nur für den Innenbereich zugelassen. Bitte beachten Sie die maximale Höhe von 2000 m. Zugelassen bis maximal Verschmutzungsgrad 2.

Warnung: Terminals, Gehäuse feldverdrahteter Terminalboxen oder Komponenten können eine Temperatur von +60 °C übersteigen.

Warnung: Für **UL-Anwendungen** bei einer maximalen Umgebungstemperatur von +70 °C:

Verwenden Sie temperaturbeständige Kabel mit einer Hitzebeständigkeit bis mindestens +125 °C für alle LioN-X- und LioN-Xlight-Varianten.

Warnung: Beachten Sie die folgenden Maximalströme für die Sensorversorgung von Class A-Geräten:

Max. 4,0 A pro Port; für **UL-Anwendungen** max. 5,0 A für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8; max. 9,0 A gesamt (mit Derating) für die ganze Port-Gruppe X1 .. X8.

Warnung: Beachten Sie die folgenden Maximalströme für die Sensorversorgung von Class A/B-Geräten:

Max. 4,0 A pro Port; für **UL-Anwendungen** max. 5,0 A aus der U_{S-S} Stromversorgung für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8 und max. 5,0 A aus der U_{AUX} -Stromversorgung für die Port-Gruppe X5/X6/X7/X8; max. 9,0 A in Summe (mit Derating) für die gesamte Port-Gruppe (X1 .. X8).

6.3 Port-Belegungen

Alle Kontaktanordnungen, die in diesem Kapitel dargestellt sind, zeigen die Ansicht von vorne auf den Steckbereich der Steckverbinder.

6.3.1 Ethernet-Ports, M12-Buchse, 4-polig, D-kodiert

Farbkodierung: grün

Abb. 8: Schemazeichnung Port X01, X02

Port	Pin	Signal	Funktion
Ethernet	1	TD+	Sendedaten Plus
Ports X01, X02	2	RD+	Empfangsdaten Plus
	3	TD-	Sendedaten Minus
	4	RD-	Empfangsdaten Minus

Tabelle 8: Belegung Port X01, X02

Vorsicht: Zerstörungsgefahr! Legen Sie die Spannungsversorgung nie auf die Datenkabel.

6.3.2 Spannungsversorgung mit M12-Power L-kodiert

Farbkodierung: grau

Abb. 9: Schemazeichnung M12 L-Kodierung (Stecker X03 für Power In)

Abb. 10: Schemazeichnung M12 L-Kodierung (Buchse X04 für Power Out)

6.3.2.1 IO-Link Master mit Class A Ports

Spannungsversorgung	Pin	Signal	Funktion
	1	U _S (+24 V)	Sensor-/Systemversorgung
	2	GND_U _L Masse/Bezugspotential U _L	
	3	GND_U _S	Masse/Bezugspotential U _S ¹
	4	U _L (+24 V)	Spannungsversorgung (NICHT galvanisch getrennt von U _S innerhalb des Gerätes)
	5	FE	Funktionserde

Tabelle 9: Spannungsversorgung mit M12-Power Class A

Achtung: Verwenden Sie ausschließlich Netzteile für die System-/ Sensor- und Aktuatorversorgung, welche PELV (Protective Extra Low Voltage) oder SELV (Safety Extra Low Voltage) entsprechen.

¹ Masse U_I und U_S im Gerät angeschlossen

Spannungsversorgungen nach EN 61558-2-6 (Trafo) oder EN 60950-1 (Schaltnetzteile) erfüllen diese Anforderungen.

6.3.2.2 IO-Link Master mit Class A/B Ports

Spannungsversorgung	Pin	Signal	Funktion	
Mixed IO-Link (Class A/ B) I/O-Ports	1	U _S (+24 V)	Sensor-/Systemversorgung	
<i>B)</i>	2	GND_U _{AUX}	Masse/Bezugspotential U _{AUX} (galvanisch getrennt von GND_U _S innerhalb des Gerätes)	
	3	GND_U _S	Masse/Bezugspotential U _S	
	4	U _{AUX} (+24 V)	Hilfsspannungsversorgung (galvanisch getrennt von U _S innerhalb des Gerätes)	
	5	FE	Funktionserde	

Tabelle 10: Spannungsversorgung mit M12-Power Class A/B

Achtung: Verwenden Sie ausschließlich Netzteile für die System-/Sensor- und Aktuatorversorgung, welche PELV (Protective Extra Low Voltage) oder SELV (Safety Extra Low Voltage) entsprechen. Spannungsversorgungen nach EN 61558-2-6 (Trafo) oder EN 60950-1 (Schaltnetzteile) erfüllen diese Anforderungen.

6.3.3 I/O-Ports als M12-Buchse

Farbkodierung: schwarz

Abb. 11: Schemazeichnung I/O-Port als M12-Buchse IO-Link

6.3.3.1 IO-Link-Ports (Class A und Class B)

0980 XSL 3x12-121	Pin	Signal	Funktion
IO-Link Class A, Ports X1 X8	1	+24 V	Spannungsversorgung +24 V
X1 X0	2	IN/OUT	Ch. B: Digitaler Eingang oder digitaler Ausgang
	3	GND	Masse/Bezugspotential
	4	C/Q	Ch. A: IO-Link Datenkommunikation, digitaler Eingang oder digitaler Ausgang
	5	n.c.	nicht verbunden

0980 XSL 3x13-121	Pin	Signal	Funktion
IO-Link Class A, Ports X1 X4	1	+24 V	Spannungsversorgung +24 V
X1 X4	2	IN/OUT	Ch. B: Digitaler Eingang oder digitaler Ausgang
	3	GND	Masse/Bezugspotential
	4	C/Q	Ch. A: IO-Link Datenkommunikation, digitaler Eingang oder digitaler Ausgang
	5	n.c.	nicht verbunden
IO-Link Class B, Ports	1	+24 V	Spannungsversorgung +24 V
X5 X8	2	+24 V AUX/OUT	Ch. B: Hilfsspannungsversorgung (galvanisch getrennt hinsichtlich der Sensor/System-Spannungsversorgung U _S) oder digitaler Ausgang
	3	GND	Masse/Bezugspotential von +24 V
	4	C/Q	Ch. A: IO-Link Datenkommunikation, digitaler Eingang oder digitaler Ausgang
	5	GND AUX	Masse/Bezugspotential von +24 V AUX/ OUT

0980 LSL 3x11-121	Pin	Signal	Funktion	
IO-Link Class A, Ports X1 X8	1	+24 V	Spannungsversorgung +24 V	
X1 X0	2	IN	Ch. B: Digitaler Eingang	
	3	GND	Masse/Bezugspotential	
	4	C/Q	Ch. A: IO-Link Datenkommunikation, digitaler Eingang oder digitaler Ausgang	
	5	n.c.	nicht verbunden	

0980 LSL 3x10-121	Pin	Signal	Funktion	
IO-Link Class A, Ports X1 X4	1	+24 V	Spannungsversorgung +24 V	
X1 X4	2	IN	Ch. B: Digitaler Eingang	
	3	GND	Masse/Bezugspotential	
	4	C/Q	Ch. A: IO-Link Datenkommunikation, digitaler Eingang oder digitaler Ausgang	
	5	n.c.	nicht verbunden	
Digital Input, Ports X5	1	+24 V	Spannungsversorgung +24 V	
X8	2	IN	Ch. B: Digitaler Eingang	
	3	GND	Masse/Bezugspotential	
	4	IN	Ch. A: Digitaler Eingang	
	5	n.c.	nicht verbunden	

Tabelle 11: I/O-Ports als IO-Link Class A und Class B

Verwendete Signalbezeichnungen im Vergleich mit den Konventionen der IO-Link-Spezifikation:

Pin	LioN-X	IO-Link-Spezifikation	Kommentar
1	+24 V	L+	Versorgung durch U _S
2	IN/OUT	I/Q	
	+24 V AUX/OUT	2L	Versorgung durch U _{AUX}
3	GND	L-	
4	C/Q IN/OUT	C/Q	
5	GND AUX	2M	

7 Inbetriebnahme

7.1 EDS-Datei

Eine EDS-Datei beschreibt das EtherNet/IP-Gerät und kann im Engineering-Tool für die Konfiguration des LioN-X-Gerätes installiert werden. Jede der LioN-X-Varianten benötigt eine eigene EDS-Datei. Die Datei kann auf den Produktseiten unseres Online-Kataloges heruntergeladen werden: catalog.belden.com

Auf Anfrage wird Ihnen die EDS-Datei auch vom Support-Team zugeschickt.

Die EDS-Dateien sind in einer Archivdatei mit dem Namen **EDS-V3.27.1-BeldenDeutschland-LioN-X-yyyymmdd.eds** zusammengefasst.

yyyymmdd steht dabei für das Ausgabedatum der Datei.

Laden Sie diese Datei herunter, und entpacken Sie sie.

Installieren Sie die EDS-Datei für die jeweilige Gerätevariante mit Hilfe des Hardware- oder Netzwerkkonfigurationstools Ihres Controller-Herstellers.

Installieren Sie in Rockwell Automation Studio 5000® die Dateien mit dem EDS Hardware Installation Tool.

Die LioN-X- und LioN-Xlight-Varianten stehen anschließend im Hardwarekatalog als *Communications Adapter* zur Verfügung.

7.2 MAC-Adressen

Jedes Gerät besitzt 3 eindeutige zugewiesene MAC-Adressen, die nicht durch den Benutzer änderbar sind. Die erste zugewiesene MAC-Adresse ist auf dem Gerät aufgedruckt.

7.3 Auslieferungszustand

EtherNet/IP-Parameter im Auslieferungszustand bzw. nach Factory Reset:

Netzwerk-Modus:	DHCP
Feste IP-Adresse:	192.168.1.XXX (XXX = Drehschalter-Position oder letzte gespeicherte Einstellung)
Subnetz-Maske:	255.255.255.0
Gateway-Adresse:	0.0.0.0
Gerätebezeichnungen:	0980 XSL 3912-121-007D-00F 0980 XSL 3912-121-007D-01F 0980 XSL 3912-121-027D-01F 0980 XSL 3913-121-007D-01F 0980 XSL 3913-121-027D-01F 0980 LSL 3111-121-0006-002 0980 LSL 3110-121-0006-002
Herstellerkennung:	21
Produkttyp:	12 (Communications Adapter)

7.4 Netzwerk-Parameter einstellen

Es gibt verschiedene Möglichkeiten für die Konfiguration der Netzparameter. Standardmäßig ist DHCP aktiviert und die Netzparameter werden durch DHCP-Requests an einen Server angefragt. Wenn Sie Netzparameter durch BOOTP-Requests anfragen möchten, müssen Sie die BOOTP-Funktion über das Web-Interface oder das TCP/IP-Interface-Objekt (CIP Class ID 0xF5, attribute 3 (0x03)) aktivieren. Es ist ebenfalls möglich, statische Netzparameter über dieses CIP-Objekt festzulegen.

7.4.1 IP-Adresse für LioN-X-Varianten

Die LioN-X-Multiprotokoll-Varianten unterstützen die IP-Adresskonfiguration mit Hilfe der drei Drehkodierschalter auf der Vorderseite des Gerätes (siehe dazu Kapitel Drehkodierschalter einstellen). Die Netzparameter können außerdem über das Web-Interface, die IIoT-Protokolle oder die LioN-Management-Suite festgelegt werden.

7.4.2 IP-Adresse für LioN-Xlight-Varianten

Die LioN-Xlight-Varianten können nicht über Drehkodierschalter konfiguriert werden. Sollte Ihr Netzwerk keinen DHCP-Server unterstützen, kann mit Hilfe des NetIdent-Protokolls in der LioN-Management-Suite eine statische IP-Addresse zugewiesen werden.

7.5 Drehkodierschalter einstellen

Die folgenden LioN-X IO-Link Master-Varianten unterstützen Multiprotokoll-Anwendungen für die Protokolle EtherNet/IP (E/IP), PROFINET (P), EtherCAT® (EC) und Modbus TCP (MB):

0980 XSL 3912-121-007D-00F

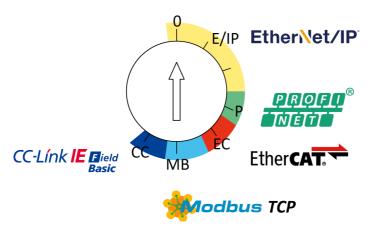
Die folgenden LioN-X IO-Link Master-Varianten unterstützen zusätzlich das Protokoll CC-Link IE Field Basic (CC):

- ▶ 0980 XSL 3912-121-007D-01F
- ▶ 0980 XSL 3912-121-027D-01F
- ▶ 0980 XSL 3913-121-007D-01F
- ▶ 0980 XSL 3913-121-027D-01F

Vorsicht:

Gefahr von Geräteschaden durch korrupten Gerätespeicher

Jegliche Unterbrechung der Stromversorgung des Gerätes während und nach der Protokollauswahl kann zu einem korrupten Gerätespeicher führen.


Nach Auswählen eines Protokolls mit anschließendem Neustart des Gerätes wird das neue Protokoll initialisiert. Dies kann bis zu 15 Sekunden dauern. In dieser Zeit ist das Gerät nicht verwendbar und die LED-Anzeigen sind außer Funktion. Nach Abschluss des Protokollwechsels kehren die LED-Anzeigen in den Normalbetrieb zurück und das Gerät kann wieder verwendet werden.

► Stellen Sie sicher, dass die Stromversorgung während des gesamten Vorgangs aufrecht erhalten bleibt.

Die LioN-X Multiprotokoll-Varianten ermöglichen es Ihnen, für die Kommunikation innerhalb eines Industrial-Ethernet-Systems verschiedene Protokolle auszuwählen. Dadurch lassen sich die IO-Link Master mit Multiprotokoll-Funktion in verschiedene Netze einbinden, ohne für jedes Protokoll spezifische Produkte zu erwerben. Außerdem haben Sie durch diese Technik die Option, ein und denselben IOL-Master in verschiedenen Umgebungen einzusetzen.

Über Drehkodierschalter auf der unteren Vorderseite der Geräte stellen Sie komfortabel und einfach sowohl das Protokoll als auch die Adresse des Gerätes ein, sofern das zu verwendende Protokoll dies unterstützt. Haben Sie eine Protokollauswahl vorgenommen und einmal die zyklische Kommunikation gestartet, speichert das Gerät diese Einstellung permanent und nutzt das gewählte Protokoll ab diesem Zeitpunkt. Um mit diesem Gerät ein anderes unterstütztes Protokoll zu nutzen, führen Sie einen Factory Reset durch.

Die Multiprotokoll-Geräte sind mit insgesamt drei Drehkodierschaltern ausgestattet. Mit dem ersten Drehkodierschalter (x100) nehmen Sie die Protokolleinstellungen vor, indem Sie die entsprechende Schalterposition verwenden. Zusätzlich wird x100 dafür verwendet, die drittletzte Stelle der IP-Adresse für EIP einzustellen.

Über die anderen Drehkodierschalter (x10 / x1) legen Sie die letzten zwei Stellen der IP-Adresse fest, wenn Sie EtherNet/IP, Modbus TCP oder CC-Link IE Field Basic verwenden.

Protokoll	x100	x10	x1
EtherNet/IP	0-2	0-9	0-9
PROFINET	Р	-	-
EtherCAT®	EC	-	-
Modbus TCP	МВ	0-9	0-9
CC-Link IE Field	СС	0-9	0-9

Tabelle 12: Belegung der Drehkodierschalter für die einzelnen Protokolle

Die Einstellung, die Sie für die Auswahl eines Protokolls vornehmen, wird in den protokollspezifischen Abschnitten ausführlich beschrieben.

Im Auslieferungszustand sind keine Protokolleinstellungen im Gerät gespeichert. In diesem Fall ist ausschließlich die Auswahl des gewünschten Protokolls erforderlich. Für die Übernahme einer geänderten Drehschalter-Einstellung (Protokolleinstellung) ist der Neustart oder das Zurücksetzen (Reset) über das Web-Interface erforderlich.

Nachdem Sie die Einstellung für das Protokoll mithilfe der Drehkodierschalter vorgenommen haben, speichert das Gerät diese Einstellung, sobald es die zyklische Kommunikation aufbaut. Anschließend ist die Änderung des Protokolls über den Drehkodierschalter nicht mehr möglich. Ab diesem Zeitpunkt wird das Gerät immer mit dem gespeicherten Protokoll gestartet. In Abhängigkeit vom Protokoll ist die Änderung der IP-Adresse möglich.

Setzen Sie zum Ändern des Protokolls das Gerät auf die Werkseinstellungen zurück. Auf diese Weise werden die internen Protokoll-Daten auf die Werkseinstellungen zurückgesetzt. Informationen zum Zurücksetzen auf die Werkseinstellungen finden Sie in Kapitel Werkseinstellungen wiederherstellen auf Seite 54.

Falls Sie den Drehkodierschalter auf eine ungültige Position eingestellt haben, meldet das Gerät dies mittels eines Blink-Codes (die LEDs MS und NS blinken dreimal rot auf).

7.5.1 EtherNet/IP-Einstellung und IP-Konfiguration über Drehkodierschalter

Das EtherNet/IP-Protokoll kann über den ersten Drehkodierschalter (x100) mit einem Wert zwischen 0 – 2 ausgewählt werden.

Verwenden Sie alle drei Drehkodierschalter auf der Vorderseite des Gerätes, um das letzte Oktett der statischen IP-Adresse festzulegen. Die ersten drei Oktette der IP-Adresse sind standardmäßig auf 192.168.1 festgelegt.

Jeder Drehkodierschalter in der EtherNet/IP-Einstellung ist einer Dezimalstelle zugeordnet, so dass Sie eine Zahl zwischen 0 – 299 konfigurieren können. Während des Start-Ups wird die Position der Drehkodierschalter typischerweise innerhalb eines Zeitzyklus gelesen.

Beispielsweise wird die Drehkodierschalter-Einstellung 2 (x100), 1 (x10) und 0 (x1) standardmäßig als die IP-Adresse 192.168.1.210 interpretiert.

Einstellung der Drehkodierschalter	Funktion
000 (Lieferzustand, Standardwert)	Bei Auslieferung ist die DHCP-Funktion aktiviert. Die Netzparameter durch DHCP-Requests an einen Server angefragt. Wenn Sie Netzparameter durch BOOTP-Requests anfragen möchten, müssen Sie die BOOTP-Funktion über den Web-Server oder das TCP/IP-Interface-Objekt (CIP Class ID 0xF5, attribute 3 (0x03)) aktivieren. Die Netzparameter werden nicht gespeichert, allerdings kann im integrierten Web-Server die Speicherung eingestellt werden.
000 (Netzparameter bereits gespeichert)	Die zuletzt gespeicherten Netzparameter werden verwendet (IP-Adresse, Subnetzmaske, Gateway-Adresse, DHCP EIN/AUS, BOOTP EIN/AUS).
001 254	Die letzten 3 Stellen der gespeicherten oder voreingestellten IP-Adresse werden durch die Einstellungen der Drehkodierschalter überschrieben. DHCP oder BOOTP werden deaktiviert, falls nötig, und das Gerät startet mit einer statischen IP-Adresse.
255 298	Die Netzparameter werden durch DHCP oder BOOTP angefordert, jedoch nicht gespeichert.
299	Die standardmäßige Werkseinstellung der IP-Adresse (192.168.001.001) wird verwendet.
979	Das Gerät wird auf die Werkseinstellungen zurückgesetzt. Auch die Netzparameter werden auf die voreingestellten Werte zurückgesetzt. In diesem Betriebsmodus ist keine Kommunikation möglich.

Tabelle 13: Einstellen von Optionen der Drehkodierschalter für EtherNet/IP

7.5.2 Werkseinstellungen wiederherstellen

Beim Zurücksetzen auf die Werkseinstellungen werden die Original-Werkseinstellungen wiederhergestellt und somit die zum betreffenden Zeitpunkt vorgenommenen Änderungen und Einstellungen zurückgesetzt. Hierbei wird auch die Protokollauswahl zurückgesetzt. Um das Modul auf die Werkseinstellungen zurückzusetzen, setzen Sie den ersten Drehkodierschalter (x100) auf 9, den zweiten (x10) auf 7 und den dritten (x1) ebenfalls auf 9.

Führen Sie anschließend einen Neustart durch, und warten Sie 10 Sekunden, da im internen Speicher Schreibvorgänge ausgeführt werden.

Während dem Zurücksetzen auf die Werkseinstellungen, blinkt die U_S -LED rot. Nachdem die internen Speicher-Schreibprozesse abgeschlossen sind, kehrt die U_S -LED dazu zurück, konstant grün oder rot zu leuchten, abhängig von der tatsächlichen U_S -Spannung.

	x100	x10	x1
Factory Reset	9	7	9

Führen Sie die in Abschnitt Drehkodierschalter einstellen auf Seite 50 beschriebenen Schritte erneut aus, um ein neues Protokoll auszuwählen.

Für das Rücksetzen auf Werkseinstellungen via Software-Konfiguration, beachten Sie Kapitel OPC UA-Konfiguration auf Seite 183 und die Konfigurationskapitel.

8 Konfiguration EtherNet/IP

Die Geräte unterstützen *Implicit Messaging* und *Explicit Messaging* für die EthetNet/IP-Kommunikation. I/O-Prozessdaten werden zyklisch Assembly-Objektverbindung mittels *Implicit Messaging* übertragen.

Unkritische Daten mit niedriger Priorität, Konfigurationseinstellungen und Diagnosedaten können über azyklische Nachrichten mittels *Explicit Messaging* ausgetauscht werden. Der Austausch erfolgt über EtherNet/IP und herstellerspezifische Objektklassen. Weitere Informationen zu Objektklassen entnehmen Sie dem Kapitel CIP-Objektklassen auf Seite 122.

8.1 Assembly-Typen

Die LioN-X-Geräte unterstützen drei unterschiedliche Assembly-Typen, die folgendermaßen aufgebaut sind:

Assembly-ID	Assembly-Name	Größe	Payload
130	Output Connection Point Assembly	0260 Byte	Consuming Data Image
131	Input Connection Point Assembly	0446 Byte	Producing Data Image
145	Configuration Assembly	0 oder 400 Byte	Module Configuration Data
146	Configuration Assembly	0 oder 300 Byte	Module Configuration Data (Omron)
147	Configuration Assembly	0 oder 210 Byte	Module Configuration Data (Min)

Das Consuming Data Image und das Producing Data Image haben dynamische Größen, die von der vollständigen Eingangs- und Ausgangsdatengröße aller angeschlossenen IO-Link-Geräte und den weiteren Eingangsstatusinformationen abhängen. Die allgemeinen Ein- und Ausgangs-Prozessdatengrößen jeder Verbindung können im Engineering-Tool konfiguriert werden. Alle IO-Link Device-Prozessdatengrößen können über Module Configuration Data konfiguriert werden.

Die Bestandteile des *Consuming Data Image* und des *Producing Data Image* werden in Kapitel Prozessdatenzuweisung auf Seite 91 näher erläutert.

Module Configuration Data werden in Kapitel Konfigurationsparameter auf Seite 60 näher erläutert.

8.2 Verbindungen

Die LioN-X-Geräte unterstützen vier verschiedene Verbindungstypen, die wie folgt definiert sind:

Verbin- dungs- name	Verbin- dungs-typ	Output- Verbin- dungs- punkt- Assembly	Output- Daten- größe	Input- Verbin- dungs- punkt- Assembly	Input- Daten- größe	Konfigu- rations- Assembly	Konfigu- rations- Daten- größe
IO-Link (Exclusive Owner)	Exclusive Owner	130	0260 Byte	131	0446 Byte	145	0 oder 480 Byte
IO-Link (Listen Only)	Listen Only	192	0	131	0446 Byte	n/a	0 Byte
IO-Link Omron (Exclusive Owner)	Exclusive Owner	130	0260 Byte	131	0446 Byte	146	0 oder 300 Byte
IO-Link Min (Exclusive Owner)	Exclusive Owner	130	0260 Byte	131	0446 Byte	147	0 oder 210 Byte

Die dynamischen Datengrößen hängen von der vollständigen Eingangsund Ausgangsdatengröße aller angeschlossenen IO-Link-Geräte und von weiteren Eingangsstatusinformationen ab. Die allgemeinen Ein- und Ausgangs-Prozessdatengrößen jeder Verbindung können im Engineering-Tool konfiguriert werden. Jede IO-Link-Geräte-Prozessdatengröße kann über die *Module Configuration Data* konfiguriert werden.

Einige Engineering-Tools erfordern die sofortige Konfiguration der Verbindungsparameter. Verwenden Sie für die Konfiguration die in den folgenden Kapiteln aufgeführten Parameter.

8.2.1 IO-Link Parameter (Exclusive Owner)

Connection properties	
Connection name	IO-Link (Exclusive Owner)
Application type	Exclusive Owner
Trigger mode	Cyclic
RPI	min. 1 ms

Connection parameters (O->T)		
Real time transfer format	32 Bit Run/Idle Header	
Connection type	POINT2POINT	
Assembly ID	130	
Data size	0260 Byte	
Data type	INT (2 Byte)	

Connection parameters (T->O)	
Real time transfer format	Pure data and modeless
Connection type	MULTICAST, POINT2POINT
Assembly ID	131
Data size	0446 Byte
Data type	INT (2 Byte)

8.2.2 IO-Link Parameter (Listen Only)

Connection properties	
Connection name	IO-Link (Listen Only)
Application type	Listen Only
Trigger mode	Cyclic
RPI	min. 1 ms

Connection parameters (O->T)	
Real time transfer format	Heartbeat
Connection type	POINT2POINT
Assembly ID	192
Data size	0 Byte
Data type	INT (2 Byte)

Connection parameters (T->0)		
Real time transfer format	Pure data and modeless	
Connection type	MULTICAST	
Assembly ID	131	
Data size	0446 Byte	
Data type	INT (2 Byte)	

8.2.3 IO-Link Parameter Omron (Exclusive Owner)

Connection properties	
Connection name	IO-Link Omron (Exclusive Owner)
Application type	Exclusive Owner
Trigger mode	Cyclic
RPI	min. 1 ms

Connection parameters (O->T)		
Real time transfer format	32 Bit Run/Idle Header	
Connection type	POINT2POINT	
Assembly ID	130	
Data size	0260 Byte	
Data type	INT (2 Byte)	

Connection parameters (T->0)		
Real time transfer format	Pure data and modeless	
Connection type	MULTICAST, POINT2POINT	
Assembly ID	131	
Data size	0446 Byte	
Data type	INT (2 Byte)	

8.2.4 IO-Link Parameter Min (Exclusive Owner)

Connection properties	
Connection name	IO-Link Min (Exclusive Owner)
Application type	Exclusive Owner
Trigger mode	Cyclic
RPI	min. 1 ms

Connection parameters (O->T)	
Real time transfer format	32 Bit Run/Idle Header
Connection type	POINT2POINT
Assembly ID	130
Data size	0260 Byte
Data type	INT (2 Byte)

Connection parameters (T->O)						
Real time transfer format	Pure data and modeless					
Connection type	MULTICAST, POINT2POINT					
Assembly ID	131					
Data size	0446 Byte					
Data type	INT (2 Byte)					

9 Konfigurationsparameter

Parameter des LioN-X-Geräts können über die Assembly-Konfiguration, CIP-Objektklassen, Web-Server oder IIoT-Protokolle konfiguriert werden. Eine Assembly-Konfiguration wird gesendet, wenn eine *Exclusive Owner-*Verbindung hergestellt wurde. Sie sind in dieser Baugruppe optional. Beim Senden werden jedoch alle vorhandenen Parameter durch diese Daten überschrieben. Daher hat der Inhalt der Assembly-Konfiguration die höchste Wertigkeit.

Um ein Überschreiben der Parameter durch CIP-Objektklassen, Web-Serveroder IIoT-Protokolle während des Betriebs zu vermeiden, können einige Sperrparameter in der SPS-Konfiguration bzw. Konfigurationsbaugruppe aktiviert werden.

Die folgenden Kapitel stellen verschiedene Setting-Gruppen mit ihren Konfigurationsparametern dar. Sie sind Bestandteil der Assembly-Konfiguration und können über das *Explicit Messaging* der angegebenen CIP-Objektklassen eingestellt werden. Die **Standardwerte** sind hervorgehoben.

9.1 Allgemeine Einstellungen

Konfiguration Parameter	on Syte-Offset KonfigAssembly			Datentyp	Gültige Werte	CIP- Objektklasse 0xA0,
	145	146	147			Instanz 1
Force Mode Lock	1	0	_	SINT	0: Disable 1: Enable	Attribute 2
Web Interface Lock	2	1	-	SINT	0: Disable 1: Enable	Attribute 3
Report U _L / U _{Aux} Supply Voltage Fault	4	3	-	SINT	0: Disable 1: Enable	Attribute 5
Report DO Fault without U _L /U _{Aux}	5	4	-	SINT	0: Disable 1: Enable	Attribute 6
CIP object configuration lock	24	5	-	SINT	0: Disable 1: Enable	Attribute 25
External configuration lock	25	6	_	SINT	0: Disable 1: Enable	Attribute 26
IO Mapping Mode	31	7	-	SINT	0: Default Assignment 1: Byte Swap 2: LSB Ch.A - MSB Ch.B 3: LSB Ch.B - MSB Ch.A 4: Free I/O Mapping	Attribute 32
General Settings	-	-	4	SINT	-128 127 (0)	-

9.1.1 Force mode lock

Die Input- und Output-Prozessdaten können über verschiedene Schnittstellen (z.B. Web-Interface, REST, OPC UA, MQTT) erzwungen werden. Die Unterstützung von Schnittstellen hängt von den verfügbaren Software-Features ab. Wenn Force mode lock aktiviert ist, können keine Input- und Output-Prozessdaten über diese Schnittstellen erzwungen werden.

Gefahr: Gefahr von Körperverletzung oder Tod! Unbeaufsichtigtes Forcing kann zu unerwarteten Signalen und unkontrollierten Maschinenbewegungen führen.

9.1.2 Web interface lock

Der Zugriff auf das Web-Interface kann eingestellt werden. Wenn *Web interface lock* aktiviert ist, sind die Web-Seiten nicht mehr erreichbar.

9.1.3 Digital Output Control

Ein digitaler Ausgang kann nur eine Steuerquelle haben. Mit dem Parameter *Digital Output Control* können Sie die DO-Kanalsteuerung (die ersten beiden Bytes der Ausgangsdaten) oder die IO-Link-Ausgangsdaten (das erste Byte der Ausgangsdaten jedes IO-Link-Gerätes) als Steuerquelle konfigurieren.

9.1.4 Report U_L/U_{AUX} supply voltage fault

Während der Inbetriebnahme ist es möglich, dass an den U_L/U_{AUX} -Pins keine Stromversorgung angeschlossen ist. Daher kann es hilfreich sein, die U_L/U_{AUX} supply voltage fault-Meldung zu unterdrücken und zu deaktivieren.

9.1.5 Report DO Fault without U_L/U_{Aux}

Mit diesem Parameter unterdrücken Sie die Aktoren-Diagnosemeldung, die gesendet wird, wenn keine U_L/U_{Aux} -Versorgung angeschlossen ist, während die Ausgangsdaten eines digitalen Kanals gesteuert werden.

9.1.6 CIP object configuration lock

Wenn keine *Exclusive Owner*-Verbindung eingerichtet ist, können alle Konfigurationsparameter durch herstellerspezifische CIP-Objektklassen

eingestellt werden. Um Parameteränderungen auszuschließen kann die Einstellfunktion dieser Objekte blockiert werden.

Bei aktivierter *CIP object*-Konfigurationssperre können die herstellerspezifischen Parameter nicht über CIP-Dienste eingestellt werden. Dies betrifft auch die *CIP object*-Konfigurationssperre selbst. Ein Reset dieses Parameters kann über eine Konfigurationsgruppe durchgeführt werden, wenn eine *Exclusive Owner*-Verbindung eingerichtet wurde.

9.1.7 External configuration lock

Konfigurationsparameter können über verschiedene alternative Schnittstellen eingestellt werden (z.B. Web-Interface, REST, OPC UA, MQTT). Eine externe Konfiguration kann nur dann vorgenommen werden, solange keine zyklische SPS-Verbindung aktiv ist. Jede neue SPS-Konfiguration überschreibt die externen Konfigurationseinstellungen.

9.1.8 IO Mapping Mode

Die Geräte unterstützen 5 verschiedene I/O-Mapping-Modi für *Digital Output Channel Control* und den *Input Channel Status*. Mode 0 bis 3 sind vordefinierte Bit-Mappings. Mode 4 ist eine freie benutzerdefinierte Zuordnung, die in Verbindung mit dem I/O-Mapping von Kanal 1 .. 16 in den Kanal-Einstellungen verwendet werden kann.

Standard-Belegung (Mode 0):

DO Ch. Control / DI Ch. Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0 (LSB)	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A
Byte 1 (MSB)	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

Byte Swap (Mode 1):

DO Ch. Control / DI Ch. Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0 (LSB)	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A
Byte 1 (MSB)	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A

LSB Ch.A - MSB Ch.B (Mode 2):

DO Ch. Control / DI Ch. Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0 (LSB)	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A
Byte 1 (MSB)	X8B	X7B	X6B	X5B	X4B	ХЗВ	X2B	X1B

LSB Ch.B - MSB Ch.A (Mode 3):

DO Ch. Control / DI Ch. Status	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0 (LSB)	X8B	X7B	X6B	X5B	X4B	ХЗВ	X2B	X1B
Byte 1 (MSB)	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A

Freies I/O-Mapping (Mode 4):

I/O-Mapping von Kanal 1 .. 16 wird verwendet (siehe Kapitel Kanaleinstellungen).

9.1.9 General Settings (Parameter)

Dieser Parameter wird in der *Min Configuration Assembly* verwendet, um alle allgemeinen Einstellungen mit einem einzigen Parameter zu konfigurieren. Es handelt sich um eine 8-Bit-Ganzzahl mit Vorzeichen, die als Bit-Feld für die verschiedenen Einstellungen verwendet wird.

Position	Einstellung	Wert
Bit 0 (LSB)	Force Mode Lock	0: Deaktiviert 1: Aktiviert
Bit 1	Web Interface Lock	0: Deaktiviert 1: Aktiviert
Bit 2	Output Auto Restart	0: Aktiviert 1: Deaktiviert
Bit 3	Report U _L /U _{Aux} Supply Voltage Fault	0: Aktiviert 1: Deaktiviert
Bit 4	Report DO Fault without U _L /U _{Aux}	0: Aktiviert 1: Deaktiviert
Bit 5	CIP object configuration lock	0: Deaktiviert 1: Aktiviert
Bit 6	External configuration lock	0: Deaktiviert 1: Aktiviert
Bit 7 (MSB)	Reserved	0

Tabelle 14: Parameter General Settings - Konfigurationsoptionen

Eine ausführliche Beschreibung dieser verschiedenen Einstellungen finden Sie in den Unterkapiteln unter Allgemeine Einstellungen auf Seite 61.

9.2 Kanaleinstellungen

Konfigurations- Parameter	Byte-Of Konfig	fset Assembl	у	Datenty	Gültige Werte	CIP- Objektklasse 0xA0, Instanz
	145	146	147			1 16
IO Mapping (Ch1 16)	32	8	_	SINT[16	0 15: Bit number of 16 channel process data 16: Inactive	Attribute 1
DO Surveillance Timeout (Ch1 16)	48	_	_	INT[16]	0 255 (80)	Attribute 2
DO Surveillance Timeout Omron (Ch1 16)	-	24	-	USINT[1	6 0 255 (80)	_
DO Failsafe (Ch1 16)	80	40	-	SINT[16	0: Set Low 1: Set High 2: Hold Last	Attribute 3
DO Restart Mode (Ch1 16)	96	56	-	SINT[16	0: Disable 1: Enable	Attribute 4
DO Switch Mode (Nicht verfügbar für LioN-Xlight IO-Link Master- Varianten)	112	72	_	SINT[16	0: Push-Pull (U _S , 0.5 A) 1: High-Side (U _L , 0.5 A) 2: High-Side (U _L , 1.0 A) 3: High-Side (U _L , 1.5 A) 4: High-Side (U _L , 2.0 A) 5: High-Side (U _L , 2.0 A) max)	Attribute 5
DI Logic (Ch1 16)	128	88	-	SINT[16	0: Normally Open 1: Normally Close	Attribute 6
DI Filter (Ch1 16)	144	104	-	SINT[16	0: Disabled 1: 1 ms 2: 2 ms 3: 3 ms 4: 6 ms 5: 10 ms 6: 15 ms	Attribute 7
DI Latch	160	-	-	INT	-32768 32767 (0)	-

Konfigurations- Parameter		Byte-Offset Daten ConfigAssembly		Datenty	Gültige Werte	CIP- Objektklasse 0xA0, Instanz	
	145	146	147			1 16	
DI Extension	176	-	-	LINT	-9223372036854775808 9223372036854775807 (0)	_	
Channel Mode (Ch1 16)	192	120	_	SINT[16	0: Inactive 1: Digital Output 2: Digital Input 3: IO-Link 4: Auxiliary Power Der unterstützte Channel Mode und der Standardwert sind von der jeweiligen Gerätevariante abhängig.	Attribute 10	
Port mode for Channel A (Pin 4)	I	-	0	INT	-32768 32767 (0)	-	
Port mode for Channel B (Pin 2)	-	_	2	INT	-32768 32767 (0)	_	

Kanalzuordnung:

Channel 1	Port X1.ChA	CIP object instance 1
Channel 2	Port X1.ChB	CIP object instance 2
[]	[]	[]
Channel 15	Port X8.ChA	CIP object instance 15
Channel 16	Port X8.ChB	CIP object instance 16

9.2.1 IO Mapping (Ch1 .. 16)

Diese Konfigurationsparameter können verwendet werden, um ein benutzerdefiniertes IO-Mapping festzulegen. Es ist für die Ein- und Ausgangsdatenrichtung gültig. Eine doppelte Zuordnung ist nicht zulässig. Im Falle eines inkonsistenten Mappings wird die gesamte Assembly-Konfiguration mit einem Fehlercode zurückgewiesen.

Um diese Parameter zu verwenden, ist es erforderlich, den IO-Mapping-Modus der *Allgemeinen Einstellungen* auf *Freies IO-Mapping (Mode 4)* zu konfigurieren. Der Standardwert für jeden Parameter ist seine eigene Kanalnummer.

9.2.2 DO Surveillance Timeout (Ch1 .. 16)

Die digitalen Ausgabekanäle werden während der Laufzeit überwacht. Die Fehlerzustände werden erkannt und als Diagnose gemeldet. Um Fehlerzustände beim Schalten der Ausgangskanäle zu vermeiden, kann Surveillance Timeout mit Verzögerung und deaktivierter Überwachung konfiguriert werden.

Die Verzögerungszeit beginnt mit einer steigenden Flanke des Ausgangscontrol-Bits. Nach Ablauf der Verzögerungszeit wird der Ausgang überwacht und Fehlerzustände werden per Diagnose gemeldet. Wenn der Kanal dauerhaft ein- oder ausgeschaltet ist, beträgt der typische Filterwert (nicht veränderbar) 5 ms.

9.2.3 DO Failsafe (Ch1 .. 16)

Die LioN-X-Geräte unterstützen eine Failsafe-Funktion für die als digitale Ausgänge verwendeten Kanäle. Im Falle eines internen Gerätefehlers befindet sich die SPS im STOP-Zustand und kann keine gültigen Prozessdaten liefern. Die Verbindung wird unterbrochen oder die Kommunikation geht verloren. Die Ausgänge werden entsprechend den konfigurierten Failsafe-Werten angesteuert.

Set Low:

Wenn Failsafe aktiv ist, wird der physikalische Ausgangspin des Kanals auf "Low" ("0") gesetzt.

Set High:

Wenn Failsafe aktiv ist, wird der physikalische Ausgangspin des Kanals auf "High" ("1") gesetzt.

Hold Last:

Wenn Failsafe aktiv ist, hält der physikalische Ausgangspin des Kanals den letzten gültigen Prozessdatenstatus ("0" oder "1").

9.2.4 DO Restart Mode (Ch1 .. 16)

Im Falle eines Kurzschlusses oder einer Überlastung an einem Ausgangskanal wird eine Diagnose gemeldet und der Ausgang auf "off" geschaltet.

Wenn *DO Restart Mode* für diesen Kanal aktiviert ist, wird der Ausgang nach einer festen Zeitverzögerung automatisch wieder eingeschaltet, um zu prüfen, ob der Überlast- oder Kurzschlusszustand noch aktiv ist. Wenn er aktiv ist, wird der Kanal wieder abgeschaltet.

Wenn *DO Restart Mode* deaktiviert ist, wird der Ausgangskanal nicht automatisch wieder eingeschaltet. Er kann nach einem logischen Reset der Prozessausgabedaten des Kanals eingeschaltet werden.

9.2.5 DO Switch Mode (Ch1 .. 16)

Ausschließlich verfügbar für folgende Gerätevarianten:

- 0980 XSL 3912-121-007D-00F
- 0980 XSL 3912-121-007D-01F
- 0980 XSL 3912-121-027D-01F
- ▶ 0980 XSL 3913-121-007D-01F
- ▶ 0980 XSL 3913-121-027D-01F

Mit diesem Parameter können Sie die Stromstärkenbegrenzung für die digitalen Ausgänge konfigurieren, indem Sie einen DO-Switch-Modus wählen. Sie können zwischen zwei unterschiedlichen Ausgangs-Switch-Modi wählen:

Push-Pull (U_S,0.5 A):

Wenn ein Kanal auf "Push-Pull" eingestellt ist, wird der Ausgang auf *aktiv* für "high" oder "low" gesetzt. Im "Low"-Zustand kann der Ausgang eine Stromsenke darstellen. Der digitale Ausgang wird über U_S mit einer maximalen Stromstärke von $0.5\,A$ versorgt. Diese Option ist nicht für den B-Kanal eines Ports verfügbar.

▶ High-Side (U_L, 0.5 A..2.0 A max):

Wenn ein Kanal auf "High-Side" eingestellt ist, wird der Ausgang auf *aktiv* für "high", jedoch nicht für "low" gesetzt. Im "Low"-Zustand besitzt der Ausgang ein hohe Impedanz. Der digitale Ausgang wird über U_L oder U_{Aux} , abhängig von der Gerätevariante, versorgt und hat eine einstellbare Stromstärkenbegrenzung. Das bedeutet, dass eine Aktor-Kanal Fehlerdiagnose gemeldet wird, wenn das Limit überschritten wird. Wenn Sie *2.0 A Max.* einstellen, ist die Stromstärkenbegrenzung nicht aktiv und der maximale Ausgangsstrom ist verfügbar.

Beachten Sie das Kapitel I/O-Port-Übersicht auf Seite 24 für die verfügbare Spannungsversorgung der digitalen Ausgänge aller LioN-X-Varianten.

9.2.6 DI Logic (Ch1 .. 16)

Der logische Zustand eines Eingangskanals kann über diese Parameter konfiguriert werden. Wenn ein Kanal auf "Normally Open" eingestellt ist, wird ein Low-Signal ("0") an die Prozesseingangsdaten übertragen (z.B. wenn ein ungedämpfter Sensor einen offenen Schaltausgang hat).

Wenn ein Kanal auf "Normalerweise Close" eingestellt ist, wird ein High-Signal ("0") an die Prozesseingangsdaten übertragen (z.B. wenn ein ungedämpfter Sensor einen geschlossenen Schaltausgang hat).

Die Kanal-LED zeigt, unabhängig von diesen Einstellungen, den physikalischen Eingangszustand des Port-Pins an.

9.2.7 DI Filter (Ch1 .. 16)

Mit diesen Parametern kann eine Filterzeit für jeden digitalen Eingangskanal konfiguriert werden. Wenn ein Filter nicht benötigt wird, kann er deaktiviert werden.

9.2.8 DI Latch

Hinweis: Verfügbar ausschließlich ab Firmware-Version 11.2 oder höher in Verbindung mit der neuesten Gerätebeschreibungsdatei.

Dieser Parameter wird verwendet, um den DI-Latch für alle 16 Kanäle mit einem einzigen Parameter zu konfigurieren.

Es handelt sich um eine 16-Bit-Ganzzahl mit Vorzeichen, die als Bit-Feld verwendet wird, wobei jeder Kanal 1 Bit belegt. Beginnend mit Port 1 Kanal A an Bit 0 (LSB), Port 1 Kanal B an Bit 1, Port 2 Kanal A an Bit 2, ..., Port 8 Kanal B an Bit 15 (MSB).

Für jeden Kanal ist das DI-Latch wie folgt kodiert:

- 0: Deaktiviert
- ▶ 1: Aktiviert

Um beispielsweise die DI-Verriegelung (Latch) für Port 1 Kanal B und Port 6 Kanal A zu aktivieren und für alle anderen Kanäle zu deaktivieren, wäre das entsprechende Bitfeld '0000010000000010', so dass der Parameter auf '1026' konfiguriert werden müsste.

Wenn der Latch für einen bestimmten DI-Kanal aktiviert ist, wird eine steigende Flanke am digitalen Eingang in den Eingangsstatusdaten hochgehalten (gelatcht), da dies von der SPS bestätigt wird.

Im Einzelnen:

- ▶ Wenn sich der DI-Kanal in einem Low-Zustand befindet und ein High-Eingang von beliebiger Dauer erkannt wird, meldet der Kanal einen High-Eingang auf unbestimmte Zeit, unabhängig vom tatsächlichen physikalischen Eingang. Mit anderen Worten: Der Latch wird ausgelöst.
- ▶ Befindet sich der Kanal im High-Zustand, ist zunächst ein Übergang zu "Low" und dann zu "High" erforderlich, damit die Verriegelung (Latch) ausgelöst wird.

Die Verriegelung wird nur ausgelöst, wenn eine steigende Flanke am Kanal auftritt.

Die Verriegelung kann zurückgesetzt werden, indem der entsprechende Ausgangskanal auf 'true' gesetzt wird. Der Eingangsstatus wird dabei nicht geändert, sondern nur die Verriegelung deaktiviert.

Diese Einstellung funktioniert nur bei Kanälen, die auf 'digital input mode' eingestellt wurden.

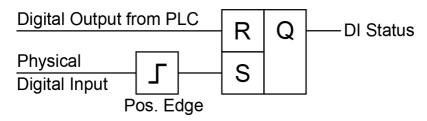


Abb. 12: Input-Latch

Voreinstellung: 0 (Deaktiviert)

9.2.9 DI Extension

Dieser Parameter wird verwendet, um die DI-Extension für alle 16 Kanäle mit einem einzigen Parameter zu konfigurieren.

Es handelt sich um eine 64-Bit-Ganzzahl mit Vorzeichen, die als Bit-Feld verwendet wird, wobei jeder Kanal 4 Bits belegt. Beginnend mit Port 1 Kanal A an Bit 0 (LSB), Port 1 Kanal B an Bit 4, Port 2 Kanal A an Bit 8, ..., Port 8 Kanal B an Bit 60 (MSB).

Für jeden Kanal ist die DI-Extension wie folgt kodiert:

- ▶ (0000)0: Deaktiviert
- ▶ (0001)1: 4 ms
- ▶ (0010)2: 8 ms
- ▶ (0011)3: 12 ms
- ▶ (0100)4: 16 ms
- ▶ (0101)5: 24 ms
- ▶ (0110)6: 32 ms
- (0111)7: 48 ms
- ► (1000)8: 64 ms
- ▶ (1001)9: 80 ms
- ► (1010)10: 96 ms
- ▶ (1011)11: 128 ms
- ▶ (1100)12: 160 ms
- ▶ (1101)13: 192 ms

► (1110)14: 224 ms ► (1111)15: 255 ms

Hinweis: Verfügbar ausschließlich ab Firmware-Version 11.2 oder höher in Verbindung mit der neuesten Gerätebeschreibungsdatei.

Dieser Parameter verlängert die Haltbarkeit des digitalen Eingangsstatus nach einer Zustandsänderung am physikalischen Eingang, wenn die Zustandsänderung am Eingang schneller stattfindet als die eingestellte Verlängerungszeit.

Die Verlängerungszeit wird bei Übergängen am Eingang von 'high' nach 'low' und von 'low' nach 'high' angewendet. Diese Einstellung gilt nur für Kanäle, die in den 'Digitaleingangsmodus (digital input mode)' gesetzt wurden.

Beispiel:

Der DI-Extension-Parameter ist auf 16 ms eingestellt, das physikalische Eingangssignal hat den Status 'low' => ein 'high'-Signal wird für 8 ms erkannt.

In diesem Fall meldet der DI-Kanal ein 'High-Status'-Signal für 16 ms, unabhängig von anderen physikalischen Eingangssignalwechseln während dieser Zeit.

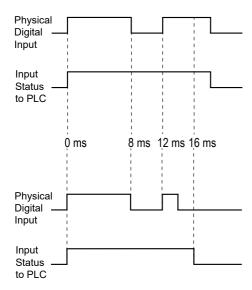


Abb. 13: DI Extension

Verfügbare Werte: Off; 8 ms; 16 ms; 64 ms

Voreinstellung: Off

9.2.10 Channel Mode (Ch1 .. 16)

Die Betriebsart jedes Kanals kann durch diese Parameter konfiguriert werden. Die Verwendbarkeit dieser Einstellung hängt von der Hardware-Variante ab und kann der Beschreibung entnommen werden (z.B. kann bei einem 8 IO-Link Class A Master ein IO-Link-Modus nur für Kanal A und nicht für Kanal B konfiguriert werden).

Inactive:

Dieser Modus sollte gewählt werden, wenn der Kanal nicht in Gebrauch ist.

Achtung: Wenn der Kanal A eines Ports inaktiv gesetzt wird, wird der zugehörige Kanal B ebenfalls inaktiv gesetzt, ungeachtet seiner Konfiguration. In diesem Fall ist daher der gesamte Port deaktiviert.

Digital Output:

In diesem Modus arbeitet der Kanal als digitaler Ausgang. Der Kanal kann durch *Digital Output Channel Control* (die ersten zwei Bytes der Ausgangsdaten) oder durch *IO-Link Output Data* (das erste Byte der Ausgangsdaten jedes IO-Link-Gerätes) der zyklischen Prozessdaten gesteuert werden. Dies hängt vom Parameter *Digital Output Control* in den *Allgemeinen Einstellungen* ab.

Digital Input:

In diesem Modus arbeitet der Kanal als digitaler Eingang. Der Zustand des Kanals ist im *Digital Input Channel Status* der zyklischen Prozessdaten ersichtlich.

IO-Link:

In diesem Modus versucht der Kanal, eine Kommunikation mit einem IO-Link Device aufzubauen. IO-Link-Prozessdaten können über eine Kommunikationsverbindung zwischen dem IO-Link Master und dem IO-Link Device ausgetauscht werden. Die Größe der IO-Link-Eingangsund Ausgangsdaten sowie der Portmodus hängen von den IO-Link-Porteinstellungen ab.

Achtung: Nicht alle Kanäle unterstützen diese Konfiguration.

Auxiliary Power:

IO-Link Master-Varianten mit Class B-Ports bieten einen Hilfsspannungsausgang an Kanal B. Wenn *Auxiliary Power* konfiguriert wurde, wird die Ausgangsspannung für den betroffenen Kanal durch den U_{AUX} -Versorgungseingang gespeist und kann nicht individuell kontrolliert werden. IO-Link Class A-Ports unterstützen diese Konfiguration nicht.

Achtung: Nicht alle Kanäle unterstützen diese Konfiguration.

9.2.11 Port-Modus für Kanal A (Pin 4)

Dieser Parameter wird in der *Min Configuration Assembly* verwendet, um den Port-Modus für die A-Kanäle (Pin 4) aller 8 Ports mit einem einzigen Parameter zu konfigurieren.

Es handelt sich um eine 16-Bit-Ganzzahl mit Vorzeichen, die als Bit-Feld verwendet wird, wobei jeder Kanal 2 Bits besetzt. Beginnend mit Port 1 bei Bit 0 (LSB), Port 2 bei Bit 2, ..., Port 8 bei Bit 14 (MSB).

Für jeden Kanal ist der Port Mode wie folgt kodiert:

(00)0: IO-Link (mapped auf Digital Input für Kanäle, die kein IO-Link unterstützen)

(01)1: Digital Output

(10)2: Digital Input

(11)3: Inactive

Eine ausführliche Beschreibung der verschiedenen Kanalmodi finden Sie im Kapitel Channel Mode (Ch1 .. 16) auf Seite 74.

Um beispielsweise die A-Kanäle der Ports 1 .. 4 auf "IO-Link" und die A-Kanäle der Ports 5 .. 8 auf "Digital Output" zu konfigurieren, wäre das entsprechende Bit-Feld '0101010100000000', so dass der Parameter auf '21760' konfiguriert werden müsste.

9.2.12 Port-Modus für Kanal B (Pin 2)

Dieser Parameter wird in der *Min Configuration Assembly* verwendet, um den Port-Modus für die B-Kanäle (Pin 2) aller 8 Ports mit einem einzigen Parameter zu konfigurieren.

Es handelt sich um eine 16-Bit-Ganzzahl mit Vorzeichen, die als Bit-Feld verwendet wird, wobei jeder Kanal 2 Bits besetzt. Beginnend mit Port 1 bei Bit 0 (LSB), Port 2 bei Bit 2, ..., Port 8 bei Bit 14 (MSB).

Für jeden Kanal ist der *Port Mode* wie folgt kodiert:

(00)0: Digital Input (mapped auf die Auxiliary Power für IO-Link Typ-B-Kanäle, die keinen Digital Input unterstützen)

(01)1: Digital Output

(10)2: Auxiliary Power (ausschließlich IO-Link Typ B)

(11)3: Inactive

Eine ausführliche Beschreibung der verschiedenen Kanalmodi finden Sie im Kapitel Channel Mode (Ch1 .. 16) auf Seite 74.

Um beispielsweise die B-Kanäle der Ports 1 .. 4 auf "Digital Output" und die B-Kanäle der Ports 5 .. 8 auf "Inactive" zu konfigurieren, wäre das entsprechende Bit-Feld '1111111101010101', so dass der Parameter auf '-171' konfiguriert werden müsste.

9.3 IO-Link Diagnoseeinstellungen

Konfigurations- Parameter	Byte-Offset Konfig Assembly	Datentyp	Gültige Werte	CIP-Objektklasse 0xA2, Instanz 1
IO-Link Master Diagnosis	208	SINT	0: Disable 1: Enable	Attribute 1
IO-Link Device Error	209	SINT	0: Disable 1: Enable	Attribute 2
IO-Link Device Warning	210	SINT	0: Disable 1: Enable	Attribute 3
IO-Link Device Notification	211	SINT	0: Disable 1: Enable	Attribute 4
IO-Link Device Diagnosis Port 1 8	212 219	SINT[8]	0: Disable 1: Enable	Attribute 5 12

9.3.1 IO-Link Master Diagnosis

Wenn dieser Parameter aktiviert ist, wird die *IO-Link Master Diagnosis* in die IO-Link-Diagnosen der Eingangsprozessdaten übertragen. Wenn konfiguriert, werden zusätzliche Diagnosen und Informationen im *IO-Link Extended Status* und in den *IO-Link-Events* übertragen.

Wenn dieser Parameter deaktiviert ist, wird keine *IO-Link Master Diagnosis* gemeldet.

9.3.2 IO-Link Device Error

Wenn dieser Parameter aktiviert ist, werden die *IO-Link Device Errors* in den IO-Link-Diagnosen der Eingangsprozessdaten übertragen. Wenn konfiguriert, werden zusätzliche Diagnosen und Informationen in den *IO-Link Extended Status* und den *IO-Link-Events* übertragen.

Wenn dieser Parameter deaktiviert ist, wird kein *IO-Link Device Error* gemeldet.

9.3.3 IO-Link Device Warning

Wenn dieser Parameter aktiviert ist, werden die *IO-Link Device Warnings* in den IO-Link-Diagnosen der Eingangsprozessdaten übertragen. Wenn konfiguriert, werden zusätzliche Diagnosen und Informationen in den *IO-Link Extended Status* und den *IO-Link-Events* übertragen.

Wenn dieser Parameter deaktiviert ist, wird kein IO-Link Device Warning gemeldet.

9.3.4 IO-Link Device Notification

Wenn dieser Parameter aktiviert ist, werden die *IO-Link Device Notifications* in den IO-Link-Diagnosen der Eingangsprozessdaten übertragen. Wenn konfiguriert, werden zusätzliche Diagnosen und Informationen in den *IO-Link Extended Status* und den *IO-Link events* übertragen.

Wenn dieser Parameter deaktiviert ist, wird kein *IO-Link Device Notification* gemeldet.

9.3.5 IO-Link Device Diagnosis Port 1 .. 8

Wenn dieser Parameter für einen IO-Link-Port aktiviert ist, werden die entsprechenden Diagnosen in den IO-Link-Diagnosen der Eingangsprozessdaten übertragen. Wenn konfiguriert, werden zusätzliche Diagnosen und Informationen in den IO-Link Extended Status und den IO-Link-Events übertragen.

Wenn dieser Parameter für einen IO-Link-Port deaktiviert ist, wird keine entsprechende Diagnose gemeldet.

9.4 IO-Link Port 1 .. 8 – Einstellungen

Konfiguration Parameter	n s yte-Offset KonfigAsse	mbly		Datentyp	Gültige Werte	CIP- Objektklasse 0xA3.
	145	146	147			Instanz 1 8
Output Data Size	224, 246, 268, 290, 312, 334, 356, 378	148, 167. 186, 205, 224, 243, 262, 281	-	SINT	0: No data 1: 2 Byte 2: 4 Byte 3: 8 Byte 4: 16 Byte 5: 32 Byte	Attribute 1
Input Data Size	225, 247, 269, 291, 313, 335, 357, 379	149, 168, 187, 206, 225, 244, 263, 282	-	SINT	0: No data 1: 2 Byte 2: 4 Byte 3: 8 Byte 4: 16 Byte 5: 32 Byte	Attribute 2
Input Data Extension	226, 248, 270, 292, 314, 336, 358, 380	150, 169, 188, 207, 226, 245, 264, 283	-	SINT	0: No Data 1: Extended Status 2: Events 3: Extended Status + Events	Attribute 3
Output Data Swapping Mode	227, 249, 271, 293, 315, 337, 359, 381	151, 170, 189, 208, 227, 246, 265, 284	-	SINT	0: Raw IO-Link Data 1 16: 1 16 WORD 17 24: 1 8 DWORD	Attribute 4
Output Data Swapping Offset	228, 250, 272, 294, 316, 338, 360, 382	152, 171, 190, 209, 228, 247, 266, 285	_	SINT	0 30 Byte ("0")	Attribute 5

Konfiguration Parameter	sByte-Offset			Datentyp	Gültige Werte	CIP-	
Parameter	KonfigAsse	mbly				Objektklasse 0xA3,	
	145	146	147			Instanz 1 8	
Input Data Swapping Mode	229, 251, 273, 295, 317, 339, 361, 383	153, 172, 191, 210, 229, 248, 267, 286	-	SINT	0: Raw IO-Link Data 1 16: 1 16 WORD 17 24: 1 8 DWORD	Attribute 6	
Input Data Swapping Offset	230, 252, 274, 296, 318, 340, 362, 384	154, 173, 192, 211, 230, 249, 268, 287	-	SINT	0 30 Byte ("0")	Attribute 7	
IOL Failsafe	231, 253, 275, 297, 319, 341, 363, 385	155, 174, 193, 212, 231, 250, 269, 288	-	SINT	0: Set Low 1: Set High 2: Hold Last 3: Replacement Value (transferred via IO-Link Failsafe Parameter Object) 4: IO-Link Master Command	Attribute 8	
Port Mode	232, 254, 276, 298, 320, 342, 364, 386	156, 175, 194, 213, 232, 251, 270, 289	-	SINT	0: Deactivated 1: Manual (with validation and backup config) 2: Autostart (no validation and backup config)	Attribute 9	
IO-Link Mode	_	_	5	SINT	-128 127 (0)	_	

Konfiguration Parameter	n s yte-Offset KonfigAsse	mbly		Datentyp	Gültige Werte	CIP- Objektklasse 0xA3,
	145	146	147			Instanz 1 8
Validation and Backup	233, 255, 277, 299, 321, 343, 365, 387	157, 176, 195, 214, 233, 252, 271, 290	7, 32, 57, 82, 107, 132, 157, 182	SINT	0: No device check and clear (no data storage)	Attribute 10
					1: Type compatible V1.0 device (no data storage)	
					2: Type compatible V1.1 device (no data storage)	
					3: Type compatible V1.1 device with Backup + Restore (download + upload)	
					4 Type compatible V1.1 device with Restore (download master to device)	
Vendor ID	234, 256, 278, 300, 322, 344, 366, 388	158, 177, 196, 215, 234, 253, 272, 291	8, 33, 58, 83, 108, 133, 158, 183	DINT	0 65535 ("0")	Attribute 11
Device ID	238, 260, 282, 304, 326, 348, 370, 392	162, 181, 200, 219, 238, 257, 276, 295	12, 37, 62, 87, 112, 137, 162, 187	DINT	0 16777215 ("0")	Attribute 12

Konfiguration Parameter	Syte-Offset KonfigAsse	mbly		Datentyp	Gültige Werte	CIP- Objektklasse 0xA3,	
	145	146	147			Instanz 1 8	
Cycle Time	242, 264, 286, 308,	-	6, 31, 56, 81, 106, 131,	SINT	0: As fast as possible	Attribute 13	
	330, 352, 374, 396		156, 181		1: 1.6 ms		
				2: 3.2 ms			
					3: 4.8 ms		
					4: 8.0 ms		
					5: 20.8 ms		
				6: 40.0 ms			
				7: 80.0 ms			
			ı		8: 120.0 ms		

Zuordnung der IO-Link-Ports:

IO-Link port 1	Port X1.ChA	CIP object instance 1		
[]	[]	[]		
IO-Link port 8	Port X8.ChA	CIP object instance 8		

Die Anzahl der IO-Link-Ports hängt von der IO-Link Master-Variante ab. IO-Link Master mit weniger als 8 IO-Link-Ports unterstützen ausschließlich Konfigurationsparameter für ihren eigenen Zähler. Nicht verwendete Konfigurationsdaten-Bytes werden als "zero bytes" innerhalb des Konfigurations-Assemblys gesendet.

Konfigurationsparameter eines IO-Link-Ports werden von der Applikation nur dann berücksichtigt, wenn der entsprechende Kanal-Modus in den Kanal-Settings auf *IO-Link* eingestellt ist.

9.4.1 Ausgangsdatengröße (Output Data Size)

Die *Output Data Size* des jeweiligen IO-Link-Gerätes kann mit diesem Parameter konfiguriert werden. Es können bis zu 32 Byte IO-Link-Ausgangsdaten pro Port vorhanden sein.

Die *Output Data Size* jedes IO-Link-Gerätes hat Einfluss auf die gesamte *Output Data Size* der Verbindung. Es muss berücksichtigt werden, dass alle IO-Link-Ausgangsdaten in die Gesamtgröße passen.

Dieser Parameter ist nur einstellbar, wenn keine Verbindung aktiv ist.

9.4.2 Eingangsdatengröße (Input Data Size)

Die *Input Data Size* des jeweiligen IO-Link-Gerätes kann mit diesem Parameter konfiguriert werden. Es können bis zu 32 Byte IO-Link-Eingangsdaten vorhanden sein.

Die *Input Data Size* jedes IO-Link-Gerätes hat Einfluss auf die gesamte *Input Data Size* der Verbindung. Es muss berücksichtigt werden, dass alle IO-Link-Eingangsdaten in die Gesamtgröße passen.

Dieser Parameter ist nur einstellbar, wenn keine Verbindung aktiv ist.

9.4.3 Input Data Extension

Die *Input Data Extension* kann ausgewählt werden, um die einzelnen IO-Link-Eingangsdaten mit erweiterten Statusinformationen und/oder IO-Link-Events zu erweitern.

Die *Input Data Extension* jedes IO-Link-Gerätes hat Einfluss auf die Gesamteingangsdatengröße der Verbindung. Es muss berücksichtigt werden, dass alle IO-Link-Ausgangsdaten einschließlich der Erweiterung in die Gesamtgröße passen.

Dieser Parameter ist nur einstellbar, wenn keine Verbindung aktiv ist.

9.4.4 Output Data Swapping Mode

Die Byte-Reihenfolge von IO-Link ist Big Endian, was nicht kompatibel zum Little Endian-Format von EtherNet/IP ist. Bei der Einstellung der Ausgabedaten im richtigen Format unterstützen die Parameter *Output Data Swapping Mode* und *Output Data Swapping Offset* den Anwender. Es können bis zu 16 "words" oder bis zu 8 "double words" für die Konvertierung der Ausgabedaten ausgewählt werden.

Raw IO-Link Data:

Kein "byte swap"

Data type WORD:

Data-Byte-Reihenfolge: Byte 0, Byte 1
Reihenfolge nach "Swap": Byte 1, Byte 0

Data type DWORD:

Data-Byte-Reihenfolge: Byte 0, Byte 1, Byte 2, Byte 3
Reihenfolge nach "Swap": Byte 3, Byte 2, Byte 1, Byte 0

9.4.5 Output Data Swapping Offset

Das Output Data Swapping Offset beschreibt den Startpunkt in den Prozessdaten für die Verwendung des konfigurierten Output Data Swapping Mode. Beide Parameter sind abhängig von der konfigurierten Ausgabedatengröße.

9.4.6 Input Data Swapping Mode

Die Byte-Reihenfolge von IO-Link ist Big Endian, was nicht kompatibel zum Little Endian-Format von EtherNet/IP ist. Um Eingabedaten im richtigen Format zu erhalten, unterstützen die Parameter *Input Data Swapping Mode* und *Input Data Swapping Offset* den Anwender. Es können bis zu 16 "words" oder bis zu 8 "double words" für die Konvertierung der Eingabedaten ausgewählt werden.

Raw IO-Link Data:

Kein "byte swap"

Data type WORD:

Data-Byte-Reihenfolge: Byte 0, Byte 1
Reihenfolge nach "Swap": Byte 1, Byte 0

Data type DWORD:

Data-Byte-Reihenfolge: Byte 0, Byte 1, Byte 2, Byte 3
Reihenfolge nach "Swap": Byte 3, Byte 2, Byte 1, Byte 0

9.4.7 Input Data Swapping Offset

Das *Input Data Swapping Offset* beschreibt den Startpunkt in den Prozessdaten für die Verwendung des konfigurierten *Input Data Swapping Mode*. Beide Parameter sind abhängig von der konfigurierten Eingabedatengröße und der optionalen Eingabedatenerweiterung.

9.4.8 IOL Failsafe

Die LioN-X-Geräte unterstützen eine Failsafe-Funktion für die Ausgabedaten der IO-Link-Kanäle. Im Falle eines internen Gerätefehlers befindet sich die SPS im STOP-Zustand und kann keine gültigen Prozessdaten liefern, die Verbindung wird unterbrochen oder die Kommunikation geht verloren: Die Ausgangsdaten der IO-Link-Kanäle werden durch die konfigurierten Failsafe-Werte gesteuert.

Set Low:

Wenn Failsafe aktiv ist, werden alle Bits der IO-Link-Ausgangsdaten auf "Low" ("0") gesetzt.

Set High:

Wenn Failsafe aktiv ist, werden alle Bits der IO-Link-Ausgangsdaten auf "High" ("1") gesetzt.

Hold Last:

Wenn Failsafe aktiv ist, halten alle Bits der IO-Link-Ausgangsdaten den letzten gültigen Prozessdatenstatus ("0" oder "1").

Ersatzwert (Replacement Value):

Über das Parameterobjekt *IO-Link Failsafe* kann für jedes IO-Link-Gerät ein Ersatzwert eingestellt werden. Wenn Failsafe aktiv ist, werden diese Ersatzwerte an das IO-Link-Gerät übertragen. Berücksichtigen Sie, dass im Fehlerfall die Ersatzwerte anstelle der Ausgabeprozessdaten gesendet werden, so dass ein konfigurierter *Swapping Mode* Einfluss auf die Byte-Reihenfolge hat.

IO-Link Master Command:

Wenn Failsafe aktiv ist, wird ein IO-Link-spezifischer Mechanismus für gültige/ungültige Ausgabeprozessdaten verwendet, und das IO-Link-Gerät bestimmt das Verhalten selbst.

9.4.9 Port Mode

Der *Port Mode* beschreibt, wie der IO-Link-Master mit dem Vorhandensein eines IO-Link-Gerätes am Port umgeht.

Deactivated:

Der IO-Link-Port ist deaktiviert, kann aber für eine spätere Verwendung konfiguriert werden. Wenn das IO-Link-Gerät nicht angeschlossen ist, werden keine Diagnosen generiert.

IO-Link Autostart:

Der IO-Link-Port ist aktiviert und es ist keine explizite Port-Konfiguration erforderlich. Konfigurationen wie *Validation and Backup* (Inspection Level), *Vendor ID*, *Device ID* und *Cycle Time* sind nicht erforderlich.

IO-Link Manual:

Der IO-Link-Port ist aktiviert und es kann eine explizite Port-Konfiguration für die Parameter *Validation and Backup* (Inspection Level), *Vendor ID*, *Device ID* und *Cycle Time* vorgenommen werden.

9.4.10 IO-Link Mode

Dieser Parameter wird in der *Min Configuration Assembly* verwendet, um den IO-Link-Modus für alle 8 Ports mit einem einzigen Parameter zu konfigurieren.

Es handelt sich um eine 8-Bit-Ganzzahl mit Vorzeichen, die als Bit-Feld verwendet wird. Beginnend mit Port 1 bei Bit 0 (LSB), Port 2 bei Bit 1, ..., Port 8 bei Bit 7 (MSB).

Für jeden Kanal ist der IO-Link Mode wie folgt kodiert:

0: Auto

1: Manuell

Eine ausführliche Beschreibung der verschiedenen IO-Link Modi finden Sie im Kapitel Port Mode auf Seite 86.

Um beispielsweise die Ports 1 .. 4 auf "IO-Link Auto" und die Ports 5 .. 8 auf "IO-Link Manual" zu konfigurieren, wäre das entsprechende Bit-Feld '11110000', so dass der Parameter auf '-16' konfiguriert werden müsste.

9.4.11 Validation und Backup

Mit diesem Parameter kann der Benutzer das Verhalten der IO-Link-Ports in Bezug auf die Typenkompatibilität und den Datenspeichermechanismus des angeschlossenen IO-Link Device einstellen.

Voraussetzung für die Verwendung von *Validation und Backup* ist, dass Sie den *Port Mode* auf "IO-Link Manual" konfigurieren.

Der IO-Link Master hat einen Backup-Speicher (backup memory), mit dem Geräteparameter gespeichert und wieder auf das IO-Link Device zurückgespielt werden können. Dieser Backup-Speicher wird durch folgende Aktionen geleert:

- ► IO-Link Master Factory-Reset (Zurücksetzen auf Werkseinstellungen)
- ▶ Neukonfiguration des *Channel Mode* , beispielsweise von "Digital-Input" zu "IO-Link"
- ▶ Neukonfiguration von *Validation and Backup*, beispielsweise von "No device check" zu "Type compatible V1.1 device with Backup & Restore"

Für weitere Informationen beachten Sie die 'IO-Link Interface and System Specification' Version 1.1.3, welche unter https://io-link.com/ heruntergeladen werden kann.

Kein Geräte-Check (keine Datenspeicherung):

Keine Überprüfung der verbundenen Hersteller-ID oder Geräte-ID und keine "Backup und Restore"-Unterstützung des IO-Link Master Parameter-Servers.

Typenkompatibles V1.0-Gerät (keine Datenspeicherung):

Typenkompatibel bezüglich IO-Link-Spezifikation V1.0, welche die Validierung von Hersteller-ID und Geräte-ID beinhaltet. Die IO-Link-Spezifikation V1.0 unterstützt keinen IO-Link Master Parameter-Server.

Typenkompatibles V1.1-Gerät (keine Datenspeicherung):

Typenkompatibel bezüglich IO-Link-Spezifikation V1.1, welche die Validierung von Hersteller-ID und Geräte-ID beinhaltet. "Backup und Restore" ist deaktiviert

Typenkompatibles V1.1-Gerät mit Backup + Restore (Upload + Download):

Typenkompatibel bezüglich IO-Link-Spezifikation V1.1, welche die Validierung der Hersteller-ID und der Geräte-ID beinhaltet. "Backup und Restore" ist aktiviert.

Beachten Sie die nachfolgenden Ausführungen zu Backup and Restore-Bedingungen:

Backup (Device zu Master):

Ein Backup (Upload vom IOL-Device zum IOL-Master) wird ausgeführt, wenn ein IO-Link Device angeschlossen ist und der Master keinerlei gültige Parameterdaten aufweist. Die Read-Parameterdaten werden dauerhaft auf dem IO-Link Master gespeichert.

Ein Upload wird auch dann ausgeführt, wenn das IO-Link Device die DS_UPLOAD_FLAG (Data Storage Upload Flag) gesetzt hat. Diese IOL-Device-Flag kann auf zwei Arten gesetzt werden:

- Parameter sind auf ein IOL-Device im Block Parameter-Modus geschrieben: Ein IO-Link Device setzt die DS_UPLOAD_FLAG selbstabhängig, wenn die Parameter Block Parameter-Modus auf das IO-Link Device geschrieben wurden mit dem letzten Systembefehl ParamDownloadStore (beispielsweise durch einen Third-Party USB-IO-Link Master für die Inbetriebnahme).
- Parameter sind auf ein IOL-Device im Single Parameter-Modus geschrieben: Wenn Single Parameter-Daten auf dem IOL-Device während dem Betrieb geändert werden, können die auf dem IOL-Master gespeicherten Geräteparameter mit dem Befehl ParamDownloadStore (Index 0x0002, Sub-Index 0x00, Wert 0x05) aktualisiert werden. Dieser Befehl setzt die DS_UPLOAD_REQ-Flag auf dem IOL-Device, sodass der IO-Link Master einen Upload-Prozess vom IO-Link Device aus durchführen kann.

Restore (Master zu Device):

Ein Restore (Download vom IOL-Master zum IOL-Device) wird ausgeführt, wenn ein IO-Link Device angeschlossen ist und der IO-Link Master gültige Parameterdaten für das IOL-Device gespeichert hat, die nicht den aktuellen Geräteparametern entsprechen.

Der Wiederherstellungsprozess kann vom IO-Link Device über den *Device Access Locks*-Parameter blockiert werden, sofern dieser vom IO-Link Device (Index 0x000C, beachten Sie die herstellerspezifische IO-Link Device-Dokumentation) unterstützt wird.

Typenkompatibles V1.1-Gerät mit Restore (Download Master zu Device):

Typenkompatibel bezüglich IO-Link-Spezifikation V1.1, welche die Validierung von Vendor ID and Device ID beinhaltet. Nur "Restore" ist aktiviert.

Beachten Sie die nachfolgenden Ausführungen zu Restore-Bedingungen:

Restore (Download / IOL-Master zu IOL-Device):

Ein Restore (Download vom IOL-Master zum IOL-Device) wird ausgeführt, wenn ein IO-Link Device angeschlossen ist und der IO-Link Master gültige Parameterdaten für das IOL-Device gespeichert hat, die nicht den aktuellen Geräteparametern entsprechen.

Im *Restore*-Modus werden keine Änderungen der IOL-Device-Parameter dauerhaft auf dem IOL-Master gespeichert. Wenn das IOL-Device die DS_UPLOAD_FLAG in diesem Modus setzt, werden die Geräteparameter durch den IOL-Master wiederhergestellt.

Der Wiederherstellungsprozess kann vom IO-Link Device über den *Device Access Locks*-Parameter blockiert werden, sofern dieser vom IO-Link Device (Index 0x000C, beachten Sie die herstellerspezifische IO-Link Device-Dokumentation) unterstützt wird.

9.4.12 Hersteller-ID (Vendor ID)

Die *Vendor ID* wird für die Validierung des IO-Link-Geräts benötigt und kann mit diesem Parameter konfiguriert werden.

Voraussetzung für die Verwendung der *Vendor ID* ist, dass Sie den *Port Mode* auf "IO-Link Manual" konfigurieren. *Validation and Backup* muss auf ein typenkompatibles V1.X-Gerät eingestellt sein.

9.4.13 Geräte-ID (Device ID)

Die *Device ID* wird für die Validierung des IO-Link-Geräts benötigt und kann mit diesem Parameter konfiguriert werden.

Voraussetzung für die Verwendung der *Device ID* ist, dass Sie den *Port Mode* auf "IO-Link Manual" konfigurieren. *Validation and Backup* muss auf ein typenkompatibles V1.X-Gerät eingestellt sein.

9.4.14 Zykluszeit (Cycle Time)

Die IO-Link-Zykluszeit kann mit diesem Parameter konfiguriert werden.

Voraussetzung für die Verwendung der *Cycle Time* ist, dass Sie den *Port Mode* auf "IO-Link Manual" konfigurieren.

So schnell wie möglich (As fast as possible):

Der IO-Link-Port verwendet die max. unterstützte IO-Link Device- und IO-Link Master-Aktualisierungszykluszeit für die zyklische I/O-Datenaktualisierung zwischen IO-Link Master und IO-Link Device.

1.6 ms, 3.2 ms, 4.8 ms, 8.0 ms, 20.8 ms, 40.0 ms, 80.0 ms, 120.0 ms:

Die Zykluszeit kann manuell auf die vorgesehenen Optionen eingestellt werden. Diese Option kann z.B. für IO-Link-Geräte verwendet werden, die über induktive Koppler angeschlossen werden. Induktive Koppler stellen normalerweise den Engpass in der Update-Zykluszeit zwischen IO-Link Master und IO-Link Device dar. Bitte beachten Sie in diesem Fall das Datenblatt des induktiven Kopplers.

10 Prozessdatenzuweisung

Die LioN-X-Geräte unterstützen im Allgemeinen die Prozessdatenkommunikation in beide Richtungen. Als "consuming data" werden in diesem Zusammenhang die Prozessausgabedaten definiert, die die physikalischen Ausgänge und IO-Link-Ausgabedaten steuern. Als "producing data" werden in diesem Zusammenhang die Prozesseingangsdaten definiert, die die physikalischen Eingänge, Diagnosen und IO-Link-Eingangsdaten mit optionalen erweiterten Status- und Event-Daten enthalten.

In den folgenden Kapiteln werden die Daten-Images für die Datenrichtung von "consuming" und "producing data" beschrieben, die den Output- und Input-Assemblies zugeordnet sind.

10.1 Consuming data image (Output)

Output-Daten-Frame	Digitaler Output – Channel control	Reserviert (z.B. Feature control)	IO-Link Output-Daten
"Consuming data"- Größe	2 Byte, INT	2 Byte, INT	0256 Byte, INT

Der komplette *Output data frame* hat eine variable Größe von bis zu 260 Bytes. Im Allgemeinen geht ein 4 Byte Run/Idle Header voraus, was insgesamt bis zu 264 Bytes ergibt.

In den folgenden Kapiteln wird die Bit-Zuweisung beschrieben.

10.1.1 Digitaler Output - Channel control

Digital output channel control	Bit	7	6	5	4	3	2	1	0
Channel number (default	Byte 0	8	7	6	5	4	3	2	1
mapping)	Byte 1	16	15	14	13	12	11	10	9

Die Kontrollwerte sind wirksam, wenn die entsprechenden Kanäle als Ausgänge konfiguriert sind und *Digital Output Control* auf *DO Channel Control* eingestellt ist.

10.1.2 IO-Link Output-Daten

IO-Link Output- Daten	IO-Link port 1 control	IO-Link port 2 control	IO-Link port 3 control	IO-Link port 4 control	IO-Link port 5 control	IO-Link port 6 control	IO-Link port 7 control	IO-Link port 8 control
IO-Link-	0 Byte							
Port Output-	2 Byte							
Größe	4 Byte							
	8 Byte							
	16 Byte							
	32 Byte							

Die Output-Größe des IO-Link-Ports hängt nicht vom konfigurierten Channel-Modus ab. Sie wird immer in den IO-Link-Ausgangsdaten berücksichtigt, daher müssen die Offsets bei einer Channel-Modus-Umkonfiguration vom Anwender **nicht** neu berechnet werden. Jeder IO-Link-Port kann auf seine erforderliche Größe eingestellt werden. Die Steuerdaten werden an das Gerät übertragen. Der Inhalt hängt jedoch vom IO-Link-*Output Data Swapping Mode* und vom *Output Data Swapping Offset* ab.

Wenn kein IO-Link-Port konfiguriert ist, hat das *Consuming data image* keine IO-Link Output-Daten.

10.2 Producing data image (Input)

Input- Daten- Frame	Digitaler Input – Channel status	Allgemeine Diagnose	Sensor- Diagnose	Actuator/ U _{Aux} - Diagnose	IO-Link- Diagnose	IO-Link Input-Daten
"Producing data"-Größe	2 Byte, INT	2 Byte, INT	2 Byte, INT	2 Byte, INT	0 Byte 6 Byte, INT	0432 Byte, INT

Der komplette *Input data frame* besitzt eine variable Größe von bis zu 446 Bytes.

In den folgenden Kapiteln wird die Bit-Zuweisung beschrieben.

10.2.1 Digitaler Input – Channel status

Digital input channel status	Bit	7	6	5	4	3	2	1	0
Channel	Byte 0	8	7	6	5	4	3	2	1
number (default mapping)	Byte 1	16	15	14	13	12	11	10	9

Jeder Statuswert ist wirksam, wenn der Kanal als Eingang konfiguriert ist.

10.2.2 Allgemeine Diagnose

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	DTO	DTU	SCA	scs	LVA	LVS
	Byte 1	0	0	0	0	IDN	IDW	IDE	IVE

Low Voltage System/Sensor Supply

LVA Low Voltage Actuator Supply

SCS Short Circuit Sensor

SCA Short Circuit Actuator/U_L/U_{Aux}

DTU Device Temperature Underrun

Device Temperature Overrun

FME Force Mode Enabled

IME Internal Module Error

IVE IO-Link Validation Error (collective

error)

IDE IO-Link Device Error (collective error)

IDW IO-Link Device Warning (collective

error)

IDN IO-Link Device Notification

(collective error)

0 reserviert

10.2.3 Sensor-Diagnose

Sensor diagnostics	Bit	7	6	5	4	3	2	1	0
Port number	Bvte 0	X8	X7	X6	X5	X4	Х3	X2	X1
	Byte 1	0	0	0	0	0	0	0	0

X1 .. 8

Sensor-Kurzschluss an Port X1 .. X8

0

reserviert

10.2.4 Actuator/U_L/U_{Aux}-Diagnose

Actuator/U _{Aux} diagnostics	Bit	7	6	5	4	3	2	1	0
Channel number (fix)	Byte 0	8	7	6	5	4	3	2	1
(IIX)	Byte 1	16	15	14	13	12	11	10	9

1..16

Actuator/U_L/U_{Aux} Kanalfehler an Kanal 1 .. 16

10.2.5 IO-Link-Diagnose

IO-Link diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	ICE8	ICE7	ICE6	ICE5	ICE4	ICE3	ICE2	ICE1
	Byte 1	0	0	0	0	0	0	0	0
	Byte 0	IVE8	IVE7	IVE6	IVE5	IVE4	IVE3	IVE2	IVE1
	Byte 1	IDE8	IDE7	IDE6	IDE5	IDE4	IDE3	IDE2	IDE1
	Byte 0	IDW8	IDW7	IDW6	IDW5	IDW4	IDW3	IDW2	IDW1
	Byte 1	IDN8	IDN7	IDN6	IDN5	IDN4	IDN3	IDN2	IDN1

ICE1..8 IO-Link Port COM Error (kein Gerät,

beschädigte Leitung, Kurzschluss)

IVE1..8 IO-Link Port Validation Error

IDE1..8 IO-Link Port Device Error

IDW1..8 IO-Link Port Device Warning

IDN1..8 IO-Link Port Device Notification

0 Reserviert

Wenn kein IO-Link-Port konfiguriert ist, zeigt das Input_Daten-Image keine IO-Link-Diagnose.

IO-Link	IO-Link F	Port 1			[]	IO-Link F	Port 8		
Input- Daten	Status	PQI	Extended- Status	Events	[]	Status	PQI	Extended- Status	Events
IO-Link	0 Byte	2 Byte	0 Byte	0 Byte	[]	0 Byte	2 Byte	0 Byte	0 Byte
Port	2 Byte	L Dyto	8 Byte	12 Byte		2 Byte	L Dyio	8 Byte	12 Byte
Input- Größe	4 Byte					4 Byte			
	8 Byte					8 Byte			
	16 Byte					16 Byte			
	32 Byte					32 Byte			

10.2.6 IO-Link Input-Daten

Die Input-Größe des IO-Link-Ports hängt nicht vom konfigurierten Channel-Modus ab. Sie wird immer in den IO-Link-Eingangsdaten berücksichtigt, daher müssen die Offsets bei einer Channel-Modus-Umkonfiguration vom Anwender **nicht** neu berechnet werden. Jeder IO-Link-Port kann auf seine erforderliche Größe eingestellt werden. Die Input-Daten des Geräts werden dem "Status"-Feld zugeordnet, und der Inhalt hängt vom *Input Data Swapping Mode* und vom *Input Data Swapping Offset* ab.

Ein IO-Link-Port kann über den Channel-Modus konfiguriert werden. Die PQI stellt einige IO-Link-Informationen zur Verfügung, ist dauerhaft verfügbar und ist nicht abhängig von der Statusgröße. Der **Extended Status** und die **Events** können über die IO-Link-Portkonfiguration aktiviert werden.

Port Qualifier Information (PQI):

PQI (Port Qualifier Information)	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	PQ	DevErr	DevCom	PortActiv	eSubstDe	√NewPar	0	0
	Byte 1	0	0	0	0	0	0	0	0

NewPar Update des Geräteparameters

erkannt

SubstDev Substitute Device (Ersatzgerät)

erkannt (andere Seriennummer)

PortActive Port aktiviert

DevCom Gerät erkannt und im Zustand

PREOPERATE oder OPERATE

DevErr Geräte- oder Port-Fehler/-Warnung

aufgetreten

PQ Gültige I/O-Prozessdaten vom Gerät

0 Reserviert

Extended-Status:

IO-Link Extended status	Bit	7	6	5	4	3	2	1	0	
Extended	Byte 0	0	0	0	ICT	BUI	SPE	ILE	OLE	
diagnostics	Byte 1	0								
Vendor ID	Byte 2	Vendor ID (LSB)								
	Byte 3	Vendor ID (MSB)								
Device ID	Byte 4				Device I	D (LSB)				
	Byte 5	Device ID								
	Byte 6	Device ID (MSB)								
Byte 7 0										

OLE Längen-Fehler der Output-

Prozessdaten (device mismatch)

ILE Längen-Fehler der Input-

Prozessdaten (device mismatch)

SPE Startup Parameterization Error =

direkter Parameter-Fehler

Bul Backup Inconsistency = Parameter-

Spiecherfehler

ICT Ungültige Zykluszeit

0 Reserviert

Events:

IO-Link events	Bit	7	6	5	4	3	2	1	0
Event Qualifier 1	Byte 0	Mode		Туре		0	0	Insta	ance
	Byte 1	0	0	0	0	0	0	0	0
Event Code 1	Byte 2	Event Code							
	Byte 3								
Event Qualifier 2	Byte 4	Mode		Туре		0	0	Insta	ance
	Byte 5	0	0	0	0	0	0	0	0
Event Code 2	Byte 6				Event	Code			
	Byte 7								
Event Qualifier 3	Byte 8	Мо	ode	Ту	ре	0	0	Insta	ance
	Byte 9	0	0	0	0	0	0	0	0
Event Code 3	Byte 10	Event Code							
	Byte 11								

Instance Unknown ("0"), Reserved (Physical

Layer PL ("1"), Data Link Layer DL ("2"), Application Layer AL ("3")),

Application ("4")

Type Benachrichtigung ("1"), Warnung

("2"), Fehler ("3")

Mode Event single shot ("1"),

Event verschwunden ("2"), Event

aufgetaucht ("3")

Event Code Vom IO-Link-Gerät gemeldeter

Diagnose-Code

0 Reserviert

10.3 Beispielanwendungen

Die Anschluss- und Konfigurationsparameter des Gerätes mit seinen variablen Datengrößen bieten Ihnen einen individuellen Ansatz zur Realisierung Ihrer Applikation. Die Größe der einzelnen IO-Link-Ports kann bestimmt werden, was einen Einfluss auf die Prozessdaten-Offsets hat.

Die folgenden Applikationsbeispiele beschreiben die Prozessdatenbelegung für die Ein- und Ausgangsdaten inklusive der Byte-Offsets. Wenn keine Notwendigkeit besteht, die Datengrößen zu konfigurieren, verwenden Sie das erste Beispiel, um die Standard-Byte-Offsets für Ihre Anwendung zu erhalten. Wenn Sie die Datengrößen reduzieren möchten, um sie z. B. auf die erforderlichen IO-Link-Datenlängen einzustellen, oder wenn Sie den erweiterten Status nicht benötigen, sehen Sie sich das zweite Beispiel an, um zu verstehen, wie die Datenzuordnung funktioniert.

Für Rockwell Automation/Allen Bradley SPS-Kunden wird empfohlen, eine Add-On-Instruktion in Studio 5000® als Schnittstelle zu den Prozessdaten zu verwenden, wie in Kapitel Add-On-Instruktion (AOI) auf Seite 112 beschrieben.

10.3.1 Prozessdaten-Images – standardmäßige Konfiguration

Die Eingangs- und Ausgangs-Datengrößen der IO-Link-Ports sind in den EDS-Files standardmäßig auf die Maximalgröße voreingestellt. Das bedeutet, Sie erhalten alle Daten von jedem IO-Link-Port. Die folgenden Tabellen bieten Ihnen eine Übersicht der Datenstrukturen und der Byte-Offsets für Eingangs- und Ausgangsdaten:

Verbindungsparameter

Ausgangs-Datengröße 260 Eingangs-Datengröße 446

Byte-Offset	Output-Daten
0	Digital output channel control (2 bytes)
2	Reserved (2 bytes)
4	IO-Link port1 data (control, 32 bytes)
36	IO-Link port2 data (control, 32 bytes)
68	IO-Link port3 data (control, 32 bytes)
100	IO-Link port4 data (control, 32 bytes)
132	IO-Link port5 data (control, 32 bytes)
164	IO-Link port6 data (control, 32 bytes)
196	IO-Link port7 data (control, 32 bytes)
228	IO-Link port8 data (control, 32 bytes)

Tabelle 15: Standardmäßige Ausgangs-Prozessdaten

Byte-Offset	Input-Daten
0	Digital input channel status (2 bytes)
2	General diagnostics (2 bytes)
4	Sensor diagnostics (2 bytes)
6	Actuator diagnostics (2 bytes)
8	IO-Link diagnostics (6 bytes)
14	IO-Link port1 data (status, 32 bytes)
46	IO-Link port1 PQI (2 bytes)
48	IO-Link port1 extended status (8 bytes)
56	IO-Link port1 events (12 bytes)
68	IO-Link port2 data (status, 32 bytes)
100	IO-Link port2 PQI (2 bytes)
102	IO-Link port2 extended status (8 bytes)
110	IO-Link port2 events (12 bytes)
122	IO-Link port3 data (status, 32 bytes)
154	IO-Link port3 PQI (2 bytes)
156	IO-Link port3 extended status (8 bytes)
164	IO-Link port3 events (12 bytes)
176	IO-Link port4 data (status, 32 bytes)
208	IO-Link port4 PQI (2 bytes)
210	IO-Link port4 extended status (8 bytes)
218	IO-Link port4 events (12 bytes)
230	IO-Link port5 data (status, 32 bytes)
262	IO-Link port5 PQI (2 bytes)
264	IO-Link port5 extended status (8 bytes)
272	IO-Link port5 events (12 bytes)
284	IO-Link port6 data (status, 32 bytes)
316	IO-Link port6 PQI (2 bytes)
318	IO-Link port6 extended status (8 bytes)
326	IO-Link port6 events (12 bytes)

Byte-Offset	Input-Daten
338	IO-Link port7 data (status, 32 bytes)
370	IO-Link port7 PQI (2 bytes)
372	IO-Link port7 extended status (8 bytes)
380	IO-Link port7 events (12 bytes)
392	IO-Link port8 data (status, 32 bytes)
424	IO-Link port8 PQI (2 bytes)
426	IO-Link port8 extended status (8 bytes)
434	IO-Link port8 events (12 bytes)

Tabelle 16: Standardmäßige Eingangs-Prozessdaten

10.3.2 Prozessdaten-Images mit modifizierten Datengrößen

Die Eingangs- und Ausgangs-Datengrößen der IO-Link-Ports und das Vorhandensein des Extended Status können durch die Konfigurationsgruppe modifiziert werden. Das bedeutet, Sie können darüber entscheiden, welche Daten auf die Prozessdaten abgebildet werden. Die folgenden Konfigurationstabellen bieten Ihnen ein Beispiel und eine Übersicht möglicher Datenstrukturen und Byte-Offsets für Eingangs- und Ausgangsdaten:

Verbindungsparameter

Ausgangs-Datengröße	62
Eingangs-Datengröße	66

10-Link Port1

Ausgangs-Datengröße2 ByteEingangs-Datengröße2 Byte

Eingangs-Datenerweiterung Keine Daten

IO-Link Port2

Ausgangs-Datengröße 32 Byte

Eingangs-Datengröße 0 Byte

Eingangs-Datenerweiterung Extended Status

IO-Link Port3

Ausgangs-Datengröße16 ByteEingangs-Datengröße4 Byte

Eingangs-Datenerweiterung Extended Status + Events

10-Link Port4

Ausgangs-Datengröße 8 Byte Eingangs-Datengröße 2 Byte

Eingangs-Datenerweiterung Keine Daten

IO-Link Port5 .. 8

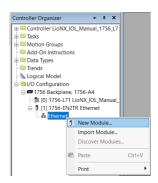
Ausgangs-Datengröße 0 Byte Eingangs-Datengröße 0 Byte

Eingangs-Datenerweiterung Keine Daten

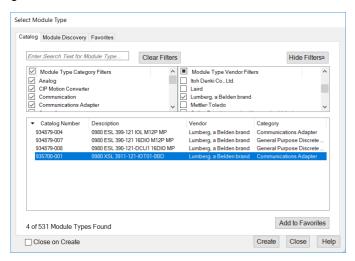
Byte-Offset	Ausgangsdaten	Eingangsdaten
0	Digital output channel control (2 bytes)	Digital input channel status (2 bytes)
2	Reserved (2 bytes)	General diagnostics (2 bytes)
4	IO-Link port1 data (control, 2 bytes)	Sensor diagnostics (2 bytes)
6	IO-Link port2 data (control, 32 bytes)	Actuator diagnostics (2 bytes)
8		IO-Link diagnostics (6 bytes)
10		
12		
14		IO-Link port1 data (status, 2 bytes)
16		IO-Link port1 PQI (2 bytes)
18		IO-Link port2 PQI (2 bytes)
20		IO-Link port2 extended status (8 bytes)
22		
24		
26		
28		IO-Link port3 data (status, 4 bytes)
30		
32		IO-Link port3 PQI (2 bytes)
34		IO-Link port3 extended status (8 bytes)
36		
38	IO-Link port3 data (control, 16 bytes)	
40		
42		IO-Link port3 events (12 bytes)
44		
46		
48		
50		
52		
54	IO-Link port4 data (control, 8 bytes)	IO-Link port4 data (status, 2 bytes)
56		IO-Link port4 PQI (2 bytes)

Byte-Offset	Ausgangsdaten	Eingangsdaten
58		IO-Link port5 PQI (2 bytes)
60		IO-Link port6 PQI (2 bytes)
62		IO-Link port7 PQI (2 bytes)
64		IO-Link port8 PQI (2 bytes)
66		

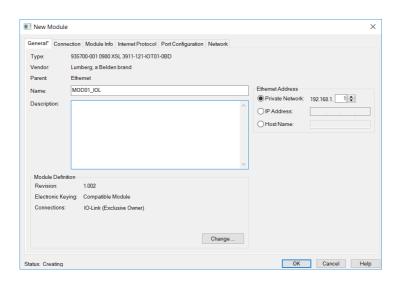
Tabelle 17: Modifizierte Prozessdaten

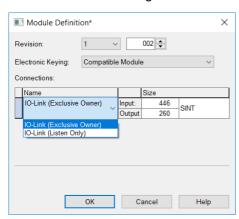

11 Konfiguration und Betrieb mit Rockwell Automation Studio 5000®

Die auf den folgenden Seiten beschriebene Konfiguration und Inbetriebnahme der Geräte bezieht sich auf Rockwell Automation Studio 5000[®], V30. Wenn Sie ein Engineering-Tool eines anderen Anbieters verwenden, beachten Sie bitte die zugehörige Dokumentation.

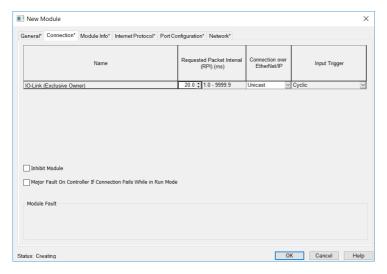

11.1 Grundlegende Inbetriebnahme

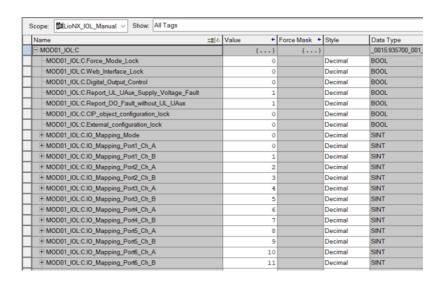
Führen Sie die folgenden Arbeitsschritte aus:


- 1. Erstellen Sie ein neues Projekt in Studio 5000[®].
- 2. Wählen Sie den passenden Controller aus.
- **3.** Wenn keine integrierte EtherNet/IP-Schnittstelle verfügbar ist, fügen Sie unter **Controller Organizer** > **I/O-Configuration** die richtige Kommunikationsschnittstelle zu Ihrer Backplane hinzu..
- **4.** Legen Sie einen Kommunikationspfad fest, um das Herunterladen des Projekts zu ermöglichen.
- **5.** Installieren Sie die EDS_Dateien derLioN-X Geräte in Studio 5000[®] mit dem EDS-Hardware-Installations-Tool.
- **6.** Gehen Sie zu **Controller Organizer** > **I/O-Configuration** und Führen Sie einen Rechts-Klick auf **Ethernet** aus.

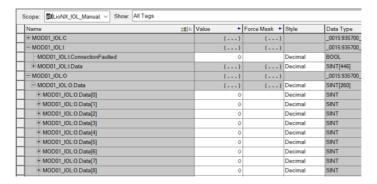

7. Wählen Sie **New Module** im Menü aus. Das folgende Auswahlfenster wird geöffnet:

- **8.** Verwenden Sie den **Module Type Vendor Filter** auf der rechten Seite, um alle installierten Geräte von Lumberg Automation[™] anzuzeigen.
- **9.** Wählen Sie das Gerät aus, das Sie hinzufügen möchten und klicken Sie auf **Create**.


- **10.** Geben Sie einen Namen für das Gerät ein und wählen Sie die zuvor gewählte IP-Adresse aus. In diesem Beispiel ist der Name **MOD01_IOL** und die IP-Adresse **192.168.1.1**.
- **11.** Klicken Sie auf **Change**, um die Einstellungen für die Geräterevision, die elektronische Codierung und die Verbindungsart zu ändern.


12. Wählen Sie den Verbindungstyp und konfigurieren Sie die Gesamtgrößen der Eingangs- und Ausgangsprozessdaten. Die Größen hängen von der Anzahl der angeschlossenen IO-Link-Geräte und deren Datenlängen in

beiden Richtungen ab. Jede Eingangs- und Ausgangsdatengröße der Geräte muss auch später in der IO-Link-Port-Konfiguration festgelegt werden. Die Auswahl des Datentyps bezieht sich auf den Typ, in dem Studio 5000[®] die Eingabe- und Ausgabedaten abbildet. Der standardmäßige Datentyp ist SINT. Der INT-Typ lässt sich auswählen, wenn jede Größe einem Vielfachen von 2 entspricht. Der DINT-Typ lässt sich auswählen, wenn jede Größe einem Vielfachen von 4 entspricht. Klicken Sie auf **OK**.


13. Im Ordner **Connection** unter **Module Properties** sehen Sie die ausgewählte Verbindung. In diesem Ordner können Sie auch das **Requested Packet Interval (RPI)** und den EtherNet/IP-Verbindungstyp definieren. Ein Wert von 1 ms ist das Minimum für den Parameter RPI, und es können die Verbindungstypen *Unicast* oder *Multicast* gewählt werden. Übernehmen Sie die Einstellungen.

14. Gehen Sie zu **Controller-Tags** in **Controller Organizer**. Die Controller-Tags für die Konfigurationsparameter enthalten den Gerätenamen, gefolgt von einem ":C". Die Konfigurationsparameter können unter **Value** eingestellt werden und sind im Kapitel Konfigurationsparameter auf Seite 60 näher beschrieben.

15. Der "Tag" der eingegebenen Prozessdaten enthält den Gerätenamen, gefolgt von einem ":I.Data". Die Ausgabe-Prozessdaten haben den gleichen Namen, gefolgt von einem ":O.Data". Beide Arrays zeigen die konfigurierten Datengrößen an. Ihr Inhalt wird im Kapitel Prozessdatenzuweisung auf Seite 91 näher beschrieben.

16. Wenn die Konfiguration abgeschlossen ist, können die Parameter in den EtherNet/IP-Controller heruntergeladen werden.

11.2 Add-On-Instruktion (AOI)

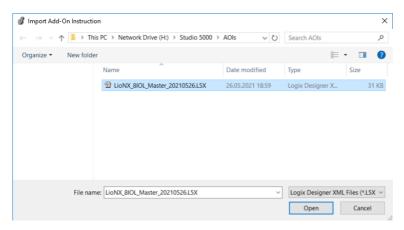
Rockwell Automation Studio 5000[®] bietet dem Benutzer einen Mechanismus für die Optimierung und Kapselung von Daten und Logik über eine Add-On-Instruktion. Diese AOI kann zu einem Strompfad ("rung") wie jede andere vordefinierte Anweisung in der Steuerung hinzugefügt werden und ist für die Vorverarbeitung der Eingangs- und Ausgangsdaten eines Geräts hilfreich.

Mit Hilfe von User-Defined Data Types (UDT) erhält der Anwender eine verständliche Schnittstelle mit einer klaren Benennung und Beschreibung für jedes Feld der Prozessdaten. Der Vorteil ist, dass die Berechnung von Byte-Offsets der Ein- und Ausgangsdaten entfällt. Jedes Feld der Prozessdaten kann direkt über einen eindeutigen Namen angesprochen werden.

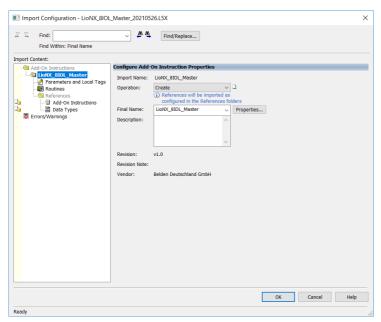
Belden stellt AOIs für Kunden zur Verfügung, die auf den Produktseiten unseres Online-Katalogs heruntergeladen werden können: catalog.belden.com

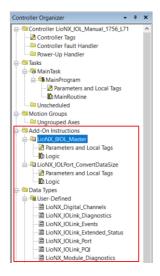
Auf Nachfrage sendet Ihnen das Belden Support-Team auch eine AOI zu.

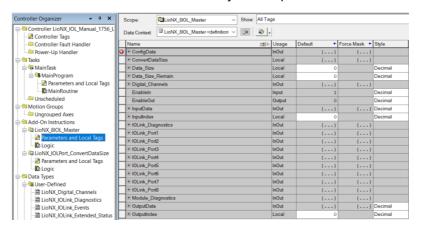
Führen Sie die folgenden Arbeitsschritte aus, um eine AOI zu verwenden:



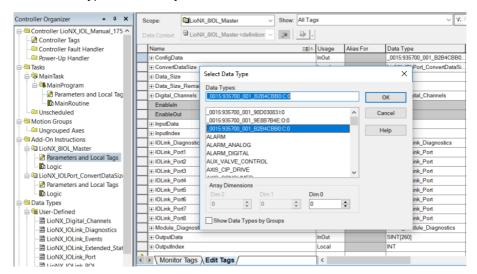
Achtung: Bei der Version V36 sollten die Einstellungen (Schritte 5, 6, 7 und 8) direkt in der LSX-Datei vorgenommen werden, bevor der Import (Schritt 1) gestartet wird.


1. In Ihrem Studio 5000®-Projekt, navigieren Sie zu **Controller Organizer**, führen Sie einen Rechtsklick auf **Add-On Instructions** aus und klicken Sie auf **Import Add-On Instruction...**:

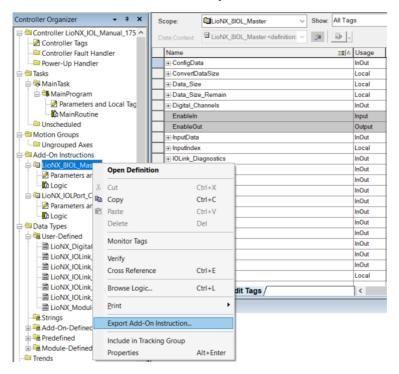

2. Öffnen Sie die *.L5X-Datei:


3. Klicken Sie auf **OK**, um die AOI mit allen notwendigen UDTs (User-Defined Data Types) zu erstellen:

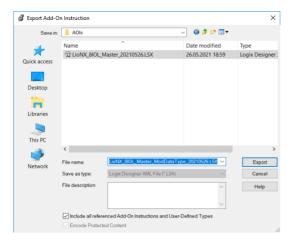
4. Die importierten Bestandteile werden im Controller Organizer angezeigt:



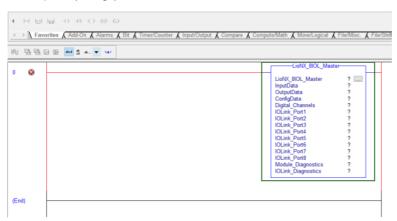
5. Prüfen Sie, ob ein Fehler in den AOI-Tags angezeigt wird (roter Kreis mit weißem Kreuz). Dies kann für die Konfigurationsdaten dann auftreten, wenn Sie zum ersten Mal eine AOI in Ihr System importieren:

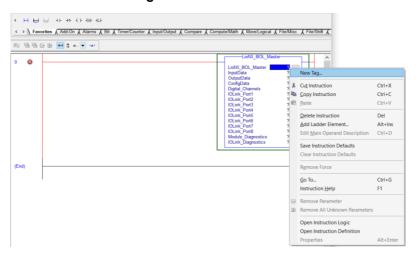

Wenn kein Fehler aufgetreten ist, Fahren Sie direkt mit Schritt 9. fort.

6. Gehen Sie zu **Edit Tags** und passen Sie den Datentyp an den Moduldefinierten Typ auf Ihrem System an:

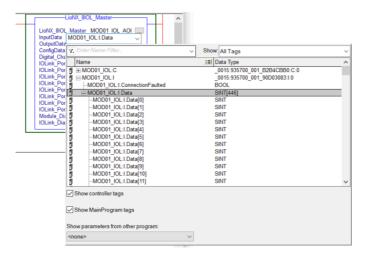


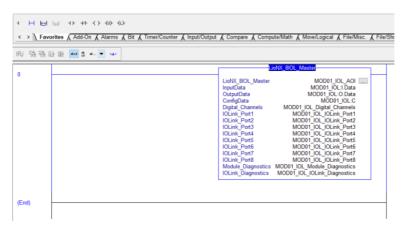
Der Datentyp muss mit dem String bis inklusive des dritten Unterstriches (_) übereinstimmen. Das CRC32 vor :C:0 ist systemabhängig und stimmt nicht mit der importierten AOI überein. Der Fehler besteht nicht mehr, wenn das rote Symbol in der ersten Spalte gelöscht wurde.

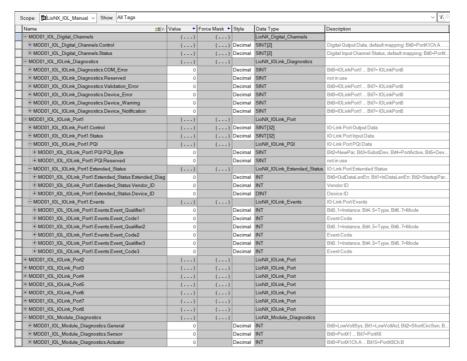

7. Wenn Sie einen Datentyp in der AOI geändert haben, sollten Sie einen Export vornehmen, um diese Version für die weitere Verwendung in anderen Projekten auf Ihrem System zu speichern. Führen Sie einen Rechtsklick auf die AOI aus und klicken Sie auf **Export Add-On Instruction...**:


8. Bearbeiten Sie den Dateinamen und speichern Sie die AOI:

9. Um die AOI zu verwenden, gehen Sie zu einer Logik, beispielsweise die *MainRoutine*, und fügen Sie via Drag-and-Drop die IO-Link Master AOI dem Strompfad ("rung") hinzu:


10. Führen Sie einen Rechtsklick auf das erste first Element der AOI aus und klicken Sie auf **New Tag...**:


11. Geben Sie einen Name ein und klicken Sie auf **Create**, um eine AOI zu erzeugen:


12. Weisen Sie die Eingangs-, Ausgangs- und Konfigurationsdaten des Moduls zu:

13. Erzeugen Sie die Tags für die übrigen Elemente wie unter Schritt **10.** und **11.** beschrieben:

14. Von nun an muss Ihre Logik nicht mehr simultan eine Kopie der Eingangsund Ausgangsdaten erstellen. Sie verwendet stattdessen die neuen DatenTags als Schnittstelle für den Datenaustausch mit dem Modul:

Hinweis:

Sollten Sie sich dazu entschließen, die Eingans- und Ausgangs-Datengrößen der Verbindung zu reduzieren, müssen Sie diese neuen Größen ebenfalls in den SINT-Arrays *InputData* und *OutputData* innerhalb der AOI anpassen. Die Schritte **6.** bis **8.** beschreiben, Datentypen einer AOI anpassen und die Änderungen speichern können.

12 CIP-Objektklassen

12.1 EtherNet/IP-Objektklassen

Gemäß der CIP-Spezifikation unterstützen die LioN-X-Varianten die folgenden Standard-EtherNet/IP-Objektklassen:

Objektklasse	Objekt-ID	Instanzen
Identity Object	0x01	0, 1
Message Router Object	0x02	0 (only on class level)
Assembly Object	0x04	0, 130, 131, 145
Connection Manager Object	0x06	0 (only on class level)
Discrete Input Point Object	0x08	0, 1 16
DLR Object	0x47	0, 1
QoS Object	0x48	0, 1
TCP/IP Interface Object	0xF5	0, 1
Ethernet Link Object	0xF6	0, 1 2
LLDP Management Object	0x109	0, 1

Alle Objekte mit Instance-Attributen werden in den folgenden Kapiteln beschrieben.

12.1.1 Identity Object (0x01)

Unterstützte Dienste:

Get Attributes All (0x01)

Reset (0x05): 0 = Reset Module (Warmstart), 1 = Reset to Factory Default Get Attribute Single (0x0E)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Vendor ID	Get	UINT	Vendor Identification
2	Device Type	Get	UINT	Indication of general type of product
3	Product Code	Get	UINT	Identification of a particular product of an individual vendor
4	Revision	Get	USINT, USINT	Structure with major and minor revision
5	Status	Get	WORD	Summary status of device:
				b0: Owned
				b1: Reserved ("0")
				b2: Configured
				b3: Reserved ("0")
				b4 7: Extended Device Status
				0 = Self-Testing or Unknown
				1 = Firmware Update in Progress
				2 = At least one faulted I/O connection
				3 = No I/O connections established
				4 = Non-Volatile Configuration bad
				5 = Major Fault
				6 = At least one I/O connection in RUN mode
				7 = At least one I/O connection established, all in IDLE mode
				8 = Unused (valid only for instances grater than "1")
				9 = Reserved
				10 15 = Vendor specific
				b8: Minor Recoverable Fault
				b9: Minor Unrecoverable Fault
				b10: Major Recoverable Fault
				b11: Major Unrecoverable Fault
				b12 15: Reserved ("0")
6	Serial Number	Get	UDINT	Serial number of device
7	Product Name	Get	STRING	Human readable identification

Attribut	Name	Zugang	Datentyp	Beschreibung
8	State	Get	USINT	Present state of the device: 0 = Nonexistent 1 = Device Self Testing 2 = Standby 3 = Operational 4 = Major Recoverable Fault 5 = Major Unrecoverable Fault 6 254 = Reserved 255 = Default Value
9	Configuration Consistency Value	Get	UINT	Can be a CRC, incrementing count or any other mechanism (vendor specific behavior) to reflect a non-volatile configuration change
19	Protection Mode	Get	WORD	Current protection mode of the device: b0: Implicit Protection enabled b1 2: Reserved b3: Explicit Protection enabled b4 15: Reserved

12.1.2 Assembly Object (0x04)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
3	Number of Instances	Get	UINT	Number of Instances currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Instance-Attribut (Instanz <AssemblyID>)

Attribut	Name	Zugang	Datentyp	Beschreibung
3	Data	Get, Set	ARRAY	Assembly Data (Set service only available for consuming assemblies that are not part of an active implicit connection)
4	Size	Get	UINT	Number of bytes in Attribute 3

12.1.3 Discrete Input Point Object (0x08)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object

Attribut	Name	Zugang	Datentyp	Beschreibung
3	Value	Get	BOOL	Input Point Value (0 = OFF, 1 = ON)
4	Status	Get	BOOL	Input Point Status (0 = OK, 1 = Alarm)

12.1.4 DLR Object (0x47)

Unterstützte Dienste:

Get Attributes All (0x01)

Get Attribute Single (0x0E)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Network Topology	Get	BOOL	0 = Linear 1 = Ring
2	Network Status	Get	BOOL	0 = Normal operation 1 = Ring Fault 2 = Unexpected Loop Detected 3 = Partial Network Fault 4 = Rapid Fault/Restore Cycle
10	Active Supervisor Address	Get	ARRAY	Supervisor IP Address, Supervisor MAC Address (0 = not configured)
12	Capability Flags	Get	DWORD	Flag description: b0: Announce-based Ring Node ("0") b1: Beacon-based Ring Node ("1") b2 4: Reserved ("0") b5: Supervisor Capable ("0") b6: Redundant Gateway Capable ("0") b7: Flush_Table frame Capable ("1") b8 15: Reserved ("0")

12.1.5 QoS Object (0x48)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device
6	Maximum ID Number Class Attributes	Get	UINT	The attribute ID number of the last class attribute of the class definition implemented in the device
7	Maximum ID Number Instance Attributes	Get	UINT	The attribute ID number of the last instance attribute of the class definition implemented in the device.

Attribut	Name	Zugang	Datentyp	Beschreibung
1	802.1Q Tag Enable	Get, Set	USINT	Enables ("1") or disables ("0") sending 802.1Q frames on CIP and IEEE 1588 messages (default value "0")
2	DSCP PTP Event	Get, Set	USINT	DSCP value for PTP Event frames (default value "59")
3	DSCP PTP General	Get, Set	USINT	DSCP value for PTP General frames (default value "47")
4	DSCP Urgent	Get, Set	USINT	CIP transport class 0/1 messages with Urgent priority (default value "55")
5	DSCP Scheduled	Get, Set	USINT	CIP transport class 0/1 messages with Scheduled priority (default value "47")
6	DSCP High	Get, Set	USINT	CIP transport class 0/1 messages with High priority (default value "43")
7	DSCP Low	Get, Set	USINT	CIP transport class 0/1 messages with Low priority (default value "31")
8	DSCP Explicit	Get, Set	USINT	CIP UCMM, CIP transport class 2/3, All other EtherNet/IP encapsulation messages (default value "27")

12.1.6 TCP/IP Object (0xF5)

Unterstützte Dienste:

Get Attributes All (0x01)

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Status	Get	DWORD	Interface Status description:
				b0 3: Interface Configuration Status
				0 = Not configured
				1 = Configuration obtained by BOOTP, DHCP or stored value
				2 = Configuration obtained by hardware settings (e.g. rotary switches)
				3 15 = Reserved
				b4: Mcast Pending
				b5: Interface Configuration Pending
				b6: Acd Status
				b7: Acd Fault
				b8 31: Reserved ("0")

Attribut	Name	Zugang	Datentyp	Beschreibung
2	Configuration Capability	Get	DWORD	Interface Capability Flags: b0: BOOTP Client ("1") b1: DNS Client ("0") b2: DHCP Client ("1") b3: DHCP-DNS Update ("0") b4: Configuration Settable ("1") b5: Hardware Configurable (0 = no rotary switches; 1 = rotary switches available) b6: Interface Configuration Change Requires Reset ("0") b7: Acd Capable ("1") b8 31: Reserved ("0")
3	Configuration Control	Get, Set	DWORD	Interface Control Flags: b0 3: Configuration Method: 0 = Stored Value 1 = BOOTP 2 = DHCP 315 = Reserved b4: DNS Enable ("0") b5 31: Reserved ("0")
4	Physical Link Object	Get	STRUCT	Path to physical link object
5	Interface Configuration	Get, Set	STRUCT	TCP/IP network interface configuration
6	Host Name	Get, Set	STRING	Host name of the device (length of 0 = not configured)
10	Select Acd	Get, Set	BOOL	Enables ("1") or disables ("0") the use of ACD (default value "1")
11	Last Conflict Detected	Get, Set	STRUCT	Structure containing information related to the last conflict detected
13	Encapsulation Inactivity Timeout	Get, Set	UINT	Number of seconds of inactivity before TCP connection is closed: 0 = disable 1 3600 = timeout in seconds 120 = default value

12.1.7 Ethernet Link Object (0xF6)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Get and Clear (0x4C)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.
3	Number of Instances	Get	UINT	Number of object instances currently created at this class level of the device (in this case number of ethernet ports)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Interface Speed	Get	UDINT	Current Interface speed in Mbps
2	Interface Flags	Get	DWORD	Interface Flags: b0: Link Status b1: Half ("0") or Full ("1") Duplex b2 4: Negotiation Status: 0 = Auto-negotiation in progress 1 = Auto-negotiation and speed detection failed (using default 10Mbps and half duplex) 2 = Auto negotiation failed but detected speed (using default half duplex) 3 = Successfully negotiated speed and duplex 4 = Auto-negotiation not attempted (forced speed and duplex) b5: Manual Setting Requires Reset b6: Local Hardware Fault b7 31: Reserved ("0")
3	Physical Address	Get	ARRAY	MAC address
4	Interface Counters	Get	STRUCT	Interface Counters
5	Media Counters	Get	STRUCT	Media-specific counters
6	Interface Control	Get, Set	STRUCT	Configuration for physical interface Control Bits (WORD): b0: Auto-negotiate b1: Forced Duplex Mode (0 = Half Duplex; 1 = Full Duplex, only valid when Auto-negotiate = 0) b2 15: Reserved ("0") Forced Interface Speed in Mbps (UINT)

Attribut	Name	Zugang	Datentyp	Beschreibung
7	Interface Type	Get	USINT	Type of interface: 0 = Unknown interface type 1 = Internal interface 2 = Twisted-pair 3 = Optical fiber 4 255 = Reserved
8	Interface State	Get	USINT	State of interface: 0 = Unknown 1 = Enabled and ready to send and receive data 2 = Disabled 3 = Testing 4 255 = Reserved
9	Admin State	Get, Set	USINT	Administrative state: 0 = Reserved 1 = Enable interface 2 = Disable interface 3 255 = Reserved
10	Interface Label	Get	STRING	Human readable identification (size max. 64)
11	Interface Capability	Get	STRUCT	Interface Capability Flags (DWORD): b0: Manual Setting Requires Reset ("0") b1: Auto-negotiate ("1") b2: Auto-MDIX ("1") b3: Manual Speed/Duplex ("1") b4 31: Reserved ("0") Speed/Duplex Array Count of following struct (USINT, 4) Interface Speed in Mbps (UINT, 10/100) Interface Duplex Mode (USINT, 0/1): 0 = Half Duplex 1 = Full Duplex 2 255 = Reserved

12.1.8 LLDP Management Object (0x109)

Unterstützte Dienste:

Get Attributes All (0x01)

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.
3	Number of Instances	Get	UINT	Number of object instances currently created at this class level of the device (in this case number of ethernet ports)
6	Maximum ID Number Class Attributes	Get	UINT	Attribute ID number of the last class attribute
7	Maximum ID Number Instance Attributes	Get	UINT	Attribute ID number of the last class attribute

Attribut	Name	Zugang	Datentyp	Beschreibung
1	LLDP Enable	Get/Set	STRUCT	LLDP Enable Array Length (UINT): 1 + Class attribute 2 from the Ethernet Link Object (0xF6) = 3
				LLDP Enable Array (BYTE):
				b0: Global Enable, LLDP Tx & Rx Enabled (1)
				b1: LLDP Tx Enabled (Intance 1 of Ethernet Link Object) (1)
				b2: LLDP Tx Enabled (Intance 2 of Ethernet Link Object) (1)
2	msgTxInterval	Get/Set	UINT	From 802.1AB-2016: Interval in seconds for transmitting LLDP frames from this device
				0 4 = Reserved
				5 32768 = Message Transmission Interval for LLDP frames (30)
				32769 65535 = Reserved
3	msgTxHold	Get/Set	USINT	From 802.1AB-2016: Multiplier of msgTxInterval to determine the value of the TTL TLV sent to neighboring devices
				0 = Reserved
				1 100 = Message Transmission Multiplier for LLDP Frames (4)
				101 255 = Reserved
4	LLDP Datastore	Get	WORD	Indication of the retrieval methods for the LLDP database:
				b0: LLDP Data Table Object (0)
				b1: SNMP (1)
				b2: NETCONF YANG (0)
				b3: RESTCONF YANG (0)
				b4 b15: Reserved (0)
5	Last Change	Get	UDINT	Counter in seconds from the last time any entry in the local LLDP database changed or power up

12.2 Herstellerspezifische Objektklassen

Die LioN-X und LioN-Xlight EtherNet/IP-Varianten unterstützen die folgenden herstellerspezifischen Objektklassen:

Objektklasse	Instanzen
General Settings Object (0xA0)	0, 1
Channel Settings Object (0xA1)	0, 1 16
IO-Link Diagnosis Settings Object (0xA2)	0, 1
IO-Link Port Settings Object (0xA3)	0, 1 n*
IO-Link Failsafe Parameter Object (0xA4)	0, 1 n*
IO-Link Device Parameter Object (0xA5)	0, 1 n*

^{*)} Die verfügbaren Instanzen hängen von der Anzahl der IO-Link-Ports der Gerätevariante ab. Es werden bis zu 8 IO-Link-Ports und Instanzen unterstützt.

12.2.1 General Settings Object (0xA0)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Attribut	Name	Zugang	Datentyp	Beschreibung
2	Force Mode Lock	Get, Set	BOOL	0: Disable
				1: Enable
3	Web Interface	Get, Set	BOOL	0: Disable
	Lock			1: Enable
5	Report UL/UAux	Get, Set	BOOL	0: Disable
	Supply Voltage Fault			1: Enable
6	Report DO Fault	Get, Set	BOOL	0: Disable
	without UL/UAux			1: Enable
724	Reserved			
25	CIP object	Get, Set	BOOL	0: Disable
	configuration lock			1: Enable
26	External	Get, Set	BOOL	0: Disable
	configuration lock			1: Enable
2731	Reserved			
32	IO Mapping Mode	Get, Set	SINT	0: Default Assignment
				1: Byte Swap
				2: LSB Ch.A - MSB Ch.B
				3: LSB Ch.B - MSB Ch.A
				4: Free IO Mapping

12.2.2 Channel Settings Object (0xA1)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Instance-Attribute (Instanz 1 .. 16)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	IO Mapping	Get, Set	SINT	0 15: Bit number of 16 channel process data 16: Inactive
2	DO Surveillance Timeout	Get, Set	INT	0 255
3	DO Failsafe	Get, Set	SINT	0: Set Low 1: Set High 2: Hold Last
4	DO Restart Mode	Get, Set	SINT	0: Disable 1: Enable
5*	DO Switch Mode	Get, Set	SINT	0: Push-Pull (U _S , 0.5 A) 1: High-Side (U _L , 0.5 A) 2: High-Side (U _L , 1.0 A) 3: High-Side (U _L , 1.5 A) 4: High-Side (U _L , 2.0 A) 5: High-Side (U _L , 2.0 A max)
6	DI Logic	Get, Set	SINT	0: Normally Open 1: Normally Close
7	DI Filter	Get, Set	SINT	0: Disabled 1: 1 ms 2: 2 ms 3: 3 ms 4: 6 ms 5: 10 ms 6: 15 ms
8	DI Latch	Get, Set	SINT	0: Disable 1: Enable
9	DI Extension	Get, Set	SINT	0 127
10	Channel Mode	Get, Set	SINT	0: Inactive 1: Digital Output 2: Digital Input 3: IO-Link 4: Auxiliary Power Der unterstützte Channel Mode ist von der jeweiligen Gerätevariante abhängig.

12.2.3 IO-Link Diagnosis Settings Object (0xA2)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Attribut	Name	Zugang	Datentyp	Beschreibung
1	IO-Link Master Diagnosis	Get, Set	BOOL	0: Disable 1: Enable
2	IO-Link Device Error	Get, Set	BOOL	0: Disable 1: Enable
3	IO-Link Device Warning	Get, Set	BOOL	0: Disable 1: Enable
4	IO-Link Device Notification	Get, Set	BOOL	0: Disable 1: Enable
5 12	IO-Link Device Diagnosis Port 1 8	Get, Set	BOOL	0: Disable 1: Enable

^{*} Nicht verfügbar für LioN-Xlight IO-Link Master-Varianten

12.2.4 IO-Link Port Settings Object (0xA3)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

^{*)} n = Anzahl der von der Gerätevariante unterstützten IO-Link-Ports

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Output Data Size	Get, Set	SINT	0: No data
				1: 2 Byte
				2: 4 Byte
				3: 8 Byte
				4: 16 Byte
				5: 32 Byte
				Only settable when no connection is established.
2	Input Data Size	Get, Set	SINT	0: No data
				1: 2 Byte
				2: 4 Byte
				3: 8 Byte
				4: 16 Byte
				5: 32 Byte
				Only settable when no connection is established.

Attribut	Name	Zugang	Datentyp	Beschreibung
3	Input Data Extension	Get, Set	SINT	0: No Data 1: Extended Status 2: Events 3: Extended Status + Events Only settable when no connection is established.
4	Output Data Swapping Mode	Get, Set	SINT	0: Raw IO-Link Data 1 16: 1 16 WORD 17 24: 1 8 DWORD Only settable when no connection is established.
5	Output Data Swapping Offset	Get, Set	SINT	0 30 Byte Only settable when no connection is established.
6	Input Data Swapping Mode	Get, Set	SINT	0: Raw IO-Link Data 1 16: 1 16 WORD 17 24: 1 8 DWORD Only settable when no connection is established.
7	Input Data Swapping Offset	Get, Set	SINT	0 30 Byte Only settable when no connection is established.
8	IOL Failsafe	Get, Set	SINT	0: Set Low 1: Set High 2: Hold Last 3: Replacement Value (transferred via IO-Link Failsafe Parameter Object) 4: IO-Link Master Command
9	Port Mode	Get, Set	SINT	0: Deactivated 1: Manual (with validation and backup config) 2: Autostart (no validation and backup config)

Attribut	Name	Zugang	Datentyp	Beschreibung
10	Validation and Backup	Get, Set	SINT	0: No device check and clear (no data storage)
				1: Type compatible V1.0 device (no data storage)
				2: Type compatible V1.1 device (no data storage)
				3: Type compatible V1.1 device with Backup + Restore (Download + Upload)
				4 Type compatible V1.1 device with Restore (Download Master to Device)
11	Vendor ID	Get, Set	DINT	0 65535
12	Device ID	Get, Set	DINT	0 16777215
13	Cycle Time	Get, Set	SINT	0: As fast as possible
				1: 1.6 ms
				2: 3.2 ms
				3: 4.8 ms
				4: 8.0 ms
				5: 20.8 ms
				6: 40.0 ms
				7: 80.0 ms
				8: 120.0 ms

12.2.5 IO-Link Failsafe Parameter Object (0xA4)

Unterstützte Dienste:

Get Attribute Single (0x0E)

Set Attribute Single (0x10)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Instance-Attribut (Instanz 1 .. n*)

^{*)} n = Anzahl der von der Gerätevariante unterstützten IO-Link-Ports

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Failsafe value of IO-Link port	Get, Set	Array of Bytes	Depends on configured process data lengths, content must consider possible swapping configuration (failsafe value format must match output data format)

12.2.6 IO-Link Device Parameter Object (0xA5)

Supported services:

Instanz 0

Get Attribute Single (0x0E)

Instanz 1 .. n*

Get ISDU data (0x4B)

Set ISDU data (0x4C)

Class-Attribut (Instanz 0)

Attribut	Name	Zugang	Datentyp	Beschreibung
1	Revision	Get	UINT	Revision of this object
2	Max. Instance	Get	UINT	Maximum instance number of an object currently created in this class level of the device.

Instance-Attribut (Instanz 1 .. n*)

^{*)} n = Anzahl der von der Gerätevariante unterstützten IO-Link-Ports

Attribut	Name	Zugang	Datentyp	Beschreibung
1	ISDU data of IO- Link port	Get, Set	Array of Bytes	ISDU-Daten eines IO-Link Device können mit dem "Get ISDU data"- Dienst gelesen und mit dem "Set ISDU data"-Dienst geschrieben werden (siehe Beschreibung dieser Dienste weiter unten).

^{*)} n = Anzahl der von der Gerätevariante unterstützten IO-Link-Ports

Get ISDU data

Der Index und der Subindex müssen in den Quelldaten gesetzt werden. Die unterschiedlichen Protokolldatenformate zwischen EtherNet/IP (Little-Endian) und IO-Link (Big-Endian) müssen berücksichtigt werden. Die Datenlänge der Antwort ist abhängig vom Datentyp des IO-Link Device.

Protokoll	EtherNet/IP		
Byte	0	1	2
Datentyp	UINT		USINT
Endianness	LSB	MSB	-
Inhalt	Index		Subindex

Tabelle 18: Quelle

Protokoll	IO-Link		
Byte	0		n
Datentyp	Abhängig vom Gerätedatentyp		
Endianness	MSB		LSB
Inhalt	Daten- oder Fehlervorkommen (max. 232 Bytes)		

Tabelle 19: Ziel

Set ISDU data

Der Index, Subindex und die IO-Link-Daten müssen in den Quelldaten gesetzt werden. Die Datenlänge der Anfrage ist abhängig vom Datentyp des IO-Link Device. Die unterschiedlichen Protokolldatenformate zwischen EtherNet/IP (Little-Endian) und IO-Link (Big-Endian) sind zu beachten. In der Antwort des IO-Link Device sind nur dann Daten vorhanden, wenn ein Fehler aufgetreten ist.

Protokoll	EtherNet/IP		IO-Link			
Byte	0	1	2	3		n
Datentyp	UINT		USINT	Abhängig vom Gerätedatentyp		
Endianness	LSB	MSB	-	MSB		LSB
Inhalt	Index		Subindex	Daten (max. 232 Bytes)		

Tabelle 20: Quelle

Protokoll	IO-Link			
Byte	0		n	
Datentyp	Abhängig vom Gerätedatentyp			
Endianness	MSB LSB			
Inhalt	Fehler bei Vorkommen (max. 232 Bytes)			

Tabelle 21: Ziel

Wenn "Read Request" oder "Write Request" nicht erfolgreich sind (CIP-Antwortstatus ist ungleich "0"), steht das folgende Response-Format von 4 Bytes zur Verfügung:

Name	Datentyp	Fehlercode-Beschreibung	Fehlercode
IO-Link Master Error	UINT Service not available		1
		Port blocked	2
		Timeout	3
		Invalid index	4
		Invalid sub-index	5
		Wrong port	6
		Wrong port function	7
		Invalid length	8
		ISDU not supported	9
IO-Link Device Error	USINT	Refer to IO-Link specification	-
IO-Link Device Additional Error	USINT	Refer to IO-Link specification	_

In Get/Set ISDU data auf Seite 154 finden Sie ein Beispiel für Rockwell Automation Studio 5000[®].

12.3 "Message"-Konfiguration in Rockwell Automation Studio 5000®

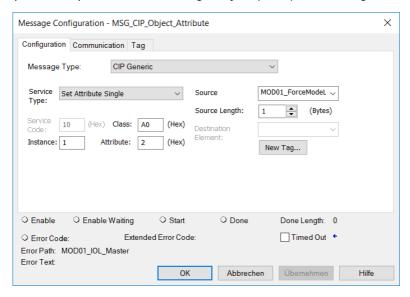
Attribute von CIP-Objektklassen können in Rockwell Automation Studio 5000® mit der *Message instruction* bearbeitet werden. Dies erfordert die Auswahl des richtigen Message- und Service-Typs mit dem entsprechenden Service-Code.

Die Kanäle wie im *Channel Settings Object* werden jeweils in aufsteigender Reihenfolge einer Instanz-ID zugeordnet.

Kanal-Zuweisung:

Channel 0	Port X1.ChA	CIP object instance 1
Channel 1	Port X1.ChB	CIP object instance 2
[]	[]	[]
Channel 14	Port X8.ChA	CIP object instance 15
Channel 15	Port X8.ChB	CIP object instance 16

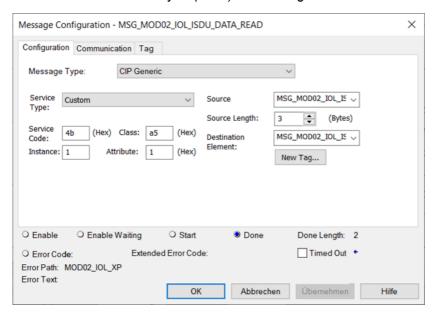
Die IO-Link-Ports wie im *IO-Link Port Settings Object*, *IO-Link Failsafe Parameter Object* und *IO-Link Device Parameter Object* sind in aufsteigender Reihenfolge jeweils einer Instanz-ID zugeordnet.


Zuweisung der IO-Link-Ports:

IO-Link port 1	Port X1.ChA	CIP object instance 1
[]	[]	[]
IO-Link port 8	Port X8.ChA	CIP object instance 8

12.3.1 Get/Set attribute single

Mit dem *Get/Set attribute single-*Service der CIP-Objektklassen-ID, der Instanz-ID und der Attribut-ID kann auf jedes Attribut, mit Ausnahme des IO-Link Device Parameter-Objekt-Instanz 1..n, zugegriffen werden.


Die folgende Abbildung zeigt ein Beispiel -Setting für das Force Mode Lock (Attribute 2) des General Settings Object (0xA0) mit Message instruction:

12.3.2 Get/Set ISDU data

Auf die IO-Link Device Parameterobjekt-Instanz 1..n kann mit dem herstellerspezifischen *Get/Set ISDU data*-Dienst über die CIP-Objektklassen-ID, die Instanz-ID und die Attribut-ID zugegriffen werden. Der Index und der Subindex müssen in den Quelldaten gesetzt werden. Für den *Set ISDU data*-Dienst müssen die IO-Link-Daten angehängt werden. Dabei sind die unterschiedlichen Protokolldatenformate zwischen EtherNet/IP (Little-Endian) und IO-Link (Big-Endian) zu beachten. Die entsprechenden Daten sind in den vorangegangenen Kapiteln beschrieben.

Die folgende Abbildung zeigt ein Beispiel für die Abfrage eines IO-Link Device Parameters unter Verwendung des Dienstes *Get ISDU data (0x4B)* des *IO-Link Device Parameter Object (0xA5)* mit *Message instruction*:

Der Index (0x003C) und Subindex (0x01) des IO-Link-Geräteparameters werden im Little-Endian-Format von EtherNet/IP in den Quelldaten eingestellt:

Hex	SINT
Hex	SINT
Hex	SINT
	Hex

Die Antwortdaten des IO-Link-Gerätes sind im Zielelement zu finden. Im folgenden Beispiel ist der empfangene Wert vom Typ UINT im Big-Endian-Format von IO-Link (0x0546 = 1350):

⊟ MSG_MOD02_IOL_ISDU_DST_READ	{}	{}	Hex	SINT[8]
# MSG_MOD02_IOL_ISDU_DST_READ[0]	16#05		Hex	SINT
MSG_MOD02_IOL_ISDU_DST_READ[1]	16#46		Hex	SINT

13 Diagnosebearbeitung

13.1 Fehler der System-/Sensorversorgung

Die Höhe des Spannungswertes eingehender System-/Sensorversorgung wird global überwacht. Ein Unterschreiten der Spannung unter ca. 18 V, bzw. ein Überschreiten der Spannung über ca. 30 V erzeugt eine Fehlerdiagnose. Die IO-Link-Spezifikation erfordert mindestens 20 V an der L+ (Pin1) Ausgangsversorgung der I/O-Ports. Mindestens 21 V an $\rm U_S$ Spannungsversorgung für den IO-Link Master sind erforderlich, um das Risiko interner Spannungsabfälle im IO-Link Master zu minimieren.

Die grüne U_S-Anzeige erlischt.

Die Fehlerdiagnose hat keine Auswirkungen auf die Ausgänge.

Vorsicht: Es muss in jedem Fall sichergestellt sein, dass die Versorgungsspannung, gemessen am entferntesten Teilnehmer, aus Sicht der Systemstromversorgung 21 V nicht unterschreitet.

Die folgende Diagnose wird im "producing" Daten-Image erzeugt:

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	DTO	DTU	SCA	scs	LVA	LVS
	Byte 1	0	0	0	0	IDN	IDW	IDE	IVE

LVS

Low Voltage System/Sensor Supply

13.2 Fehler der Auxiliary-/ Aktuatorversorgung

Die Höhe des Spannungswertes der eingehenden Auxiliary-/ Aktuatorversorgung wird global überwacht. Bei aktivierter *Report U_L/U_{AUX} Supply Voltage Fault*-Diagnose wird bei unterschreiten der Spannung unter ca. 18 V oder Überschreiten der Spannung über ca. 30 V eine Diagnose erzeugt. Die Anzeige U_L/U_{AUX} leuchtet rot auf.

Die folgende Diagnose wird im producing data image erzeugt:

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	DTO	DTU	SCA	scs	LVA	LVS
	Byte 1	0	0	0	IDN	IDW	IDE	IVE	0

LVA

Low Voltage Actuator Supply

Wenn Ausgangskanäle auf *High State* und *Report DO Fault without U_L/U_{AUX}* eingestellt sind, werden weitere durch den Spannungsfehler verursachte Fehlermeldungen an den Kanälen erzeugt.

Die folgende Diagnose wird im producing data image erzeugt:

Actuator/U _{AUX} diagnostics	Bit	7	6	5	4	3	2	1	0
Channel number	Byte 0	8	7	6	5	4	3	2	1
(fix)	Byte 1	16	15	14	13	12	11	10	9

1..16

Actuator/ U_L/U_{AUX} Kanalfehler an Kanal 1 .. 16

Wenn Report U_L/U_{AUX} Supply Voltage Fault deaktiviert ist, treten keine U_L/U_{AUX} - oder Kanal-Diagnosen auf.

13.3 Überlast/Kurzschluss der I/O-Port-Sensorversorgungsausgänge

Bei einer Überlast oder einem Kurzschluss zwischen Pin 1 und Pin 3 der Ports (X1 .. X8) werden folgende kanalspezifische Diagnosen im *producing data image* erzeugt:

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	DTO	DTU	SCA	scs	LVA	LVS
	Byte 1	0	0	0	0	IDN	IDW	IDE	IVE

SCS

Short Circuit Sensor

Sensor diagnostics	Bit	7	6	5	4	3	2	1	0
Port number	Byte 0	X8	X7	X6	X5	X4	Х3	X2	X1
	Byte 1	0	0	0	0	0	0	0	0

X1 .. 8

Sensor-Kurzschluss an Port X1.. X8

13.4 Überlast/Kurzschluss der digitalen Ausgänge

Im Falle einer Überlastung oder eines Kurzschlusses eines Ausgangskanals werden folgende kanalspezifische Diagramme im *producing data image* erzeugt:

General diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	IME	FME	DTO	DTU	SCA	SCS	LVA	LVS
	Byte 1	0	0	0	0	IDN	IDW	IDE	IVE

SCA

Short Circuit Actuator/U_L/U_{Aux}

Actuator/U _{AUX} diagnostics	Bit	7	6	5	4	3	2	1	0
Channel number	Byte 0	8	7	6	5	4	3	2	1
(fix)	Byte 1	16	15	14	13	12	11	10	9

1..16

Actuator/U_L/U_{AUX} channel error on channel 1 .. 16

Die Ermittlung eines Kanalfehlers erfolgt durch einen Vergleich zwischen dem von einer Steuerung gesetzten Sollwert und dem Physikalischen Wert eines Ausgangskanals.

Bei der Aktivierung eines Ausgangskanals (steigende Flanke des Kanalzustands) erfolgt die Filterung der Kanalfehler für die Dauer, die über den Parameter "Surveillance Timeout" bei der Konfiguration des Geräts festgelegt wurde. Der Wert dieses Parameters umfasst einen Bereich von 0 bis 255 ms, die Werkseinstellung ist 80 ms.

Der Filter dient zur Vermeidung von vorzeitigen Fehlermeldungen bei Einschalten einer kapazitiven Last oder Ausschalten einer induktiven Last sowie anderer Spannungsspitzen während einer Statusänderung.

Im statischen Zustand des Ausgangskanals, während dieser also dauerhaft eingeschaltet ist, beträgt die Filterzeit zwischen Fehlererkennung und Diagnose typischerweise 5 ms.

13.5 IO-Link COM-Fehler

Wird ein IO-Link Device im COM-Mode abgezogen, ein falsches IO-Link Device gesteckt oder tritt ein elektrischer Fehler an der C/Q (Pin 4)-Leitung z. B. durch einen Kurzschluss auf, wird folgende Diagnose im *producing data image* erzeugt:

IO-Link diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	ICE8	ICE7	ICE6	ICE5	ICE4	ICE3	ICE2	ICE1
	Byte 1	0	0	0	0	0	0	0	0
	Byte 2	IVE8	IVE7	IVE6	IVE5	IVE4	IVE3	IVE2	IVE1
	Byte 3	IDE8	IDE7	IDE6	IDE5	IDE4	IDE3	IDE2	IDE1
	Byte 4	IDW8	IDW7	IDW6	IDW5	IDW4	IDW3	IDW2	IDW1
	Byte 5	IDN8	IDN7	IDN6	IDN5	IDN4	IDN3	IDN2	IDN1

ICE1 .. 8

IO-Link Port COM Error (kein Gerät, beschädigte Leitung, Kurzschluss)

13.6 IO-Link Validation-Fehler

Wird ein IO-Link Devicedurch ein neues Gerät ausgetauscht, ist die Validierung bereits konfiguriert. Die Hersteller- und/oder die Geräte-ID entsprechen nicht den Daten des Gerätes und es wird folgende Diagnose im producing data image erzeugt:

IO-Link diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	ICE8	ICE7	ICE6	ICE5	ICE4	ICE3	ICE2	ICE1
	Byte 1	0	0	0	0	0	0	0	0
	Byte 2	IVE8	IVE7	IVE6	IVE5	IVE4	IVE3	IVE2	IVE1
	Byte 3	IDE8	IDE7	IDE6	IDE5	IDE4	IDE3	IDE2	IDE1
	Byte 4	IDW8	IDW7	IDW6	IDW5	IDW4	IDW3	IDW2	IDW1
	Byte 5	IDN8	IDN7	IDN6	IDN5	IDN4	IDN3	IDN2	IDN1

IVE1 .. 8

IO-Link Port Validation Error

Wenn erweiterte Status-Daten bei der Konfiguration eines IO-Link-Ports aktiviert wurden, werden zusätzlich die Hersteller- und Geräte-ID in das producing data image übertragen.

13.7 IO-Link Geräte-Diagnose

Die Diagnose eines IO-Link Device erfolgt in drei Stufen: "Error", "Warning" oder "Notification".

Die folgende Diagnose wird im producing data image erzeugt:

IO-Link diagnostics	Bit	7	6	5	4	3	2	1	0
General Bit	Byte 0	ICE8	ICE7	ICE6	ICE5	ICE4	ICE3	ICE2	ICE1
	Byte 1	0	0	0	0	0	0	0	0
	Byte 2	IVE8	IVE7	IVE6	IVE5	IVE4	IVE3	IVE2	IVE1
	Byte 3	IDE8	IDE7	IDE6	IDE5	IDE4	IDE3	IDE2	IDE1
	Byte 4	IDW8	IDW7	IDW6	IDW5	IDW4	IDW3	IDW2	IDW1
	Byte 5	IDN8	IDN7	IDN6	IDN5	IDN4	IDN3	IDN2	IDN1

IDE1 .. 8 IO-Link Port Device Error

IDW1 .. 8 IO-Link Port Device Warning

IDN1 .. 8 IO-Link Port Device Notification

Wenn IO-Link Event-Daten durch die Konfiguration eines IO-Link-Ports aktiviert sind, berichtet das Gerät im *producing data image* zusätzlich auch Event-Codes. Verwenden Sie die IO-Link Device-Dokumentation, um die Fehlermeldungen zu entschlüsseln.

14 IIoT-Funktionalität

Die LioN-X-Gerätevarianten bieten eine Vielzahl neuer Schnittstellen und Funktionen für die optimale Integration in bestehende oder zukünftige IIoT (Industrial Internet of Things)-Netzwerke. Die Geräte fungieren weiterhin als Feldbus-Geräte, die mit einer SPS (Speicherprogrammierbare Steuerung) kommunizieren und auch von dieser gesteuert werden können.

Zusätzlich bieten die Geräte gängige IIoT-Schnittstellen, welche neue Kommunikationskanäle neben der SPS ermöglichen. Die Kommunikation wird über die IIoT-relevanten Protokolle MQTT und OPC UA ausgeführt. Mit Hilfe dieser Schnittstellen können nicht nur alle Informationen in einem LioN-X-Gerät gelesen werden. Sie ermöglichen auch deren Konfiguration und Kontrolle, wenn der Benutzer dies wünscht. Alle Schnittstellen können weitreichend konfiguriert werden und bieten eine Read-Only-Funktionalität.

Alle LioN-X-Varianten bieten die Nutzer-Administration, welche auch für den Zugriff und die Kontrolle auf die IIoT-Protokolle verfügbar ist. Dies erlaubt Ihnen, alle Modifikations-Optionen für die Geräte-Einstellungen über personalisierte Nutzer-Autorisierung zu verwalten.

Alle IIoT-Protokolle können unabhängig vom Feldbus genutzt und konfiguriert werden. Ebenso ist es möglich, die Geräte komplett ohne die Hilfe einer SPS zu verwenden und diese stattdessen über IIoT-Protokolle zu steuern.

Achtung: Wenn Sie die IIoT-Funktionalität verwenden, empfiehlt sich eine gesicherte lokale Netzwerk-Umgebung ohne direkten Zugang zum Internet.

Achtung: Aktivieren Sie jeweils nur eines der IIoT-Protokolle. Verwenden Sie ausschließlich MOTT oder OPC UA.

14.1 MQTT

MQTT-Funktionen sind **ausschließlich** für folgende Gerätevarianten verfügbar:

- 0980 XSL 3912-121-007D-00F
- ▶ 0980 XSL 3912-121-007D-01F
- ▶ 0980 XSL 3912-121-027D-01F
- ▶ 0980 XSL 3913-121-007D-01F
- ▶ 0980 XSL 3913-121-027D-01F

Das MQTT (Message Queuing Telemetry Transport)-Protokoll ist ein ofenes Netzwerkprotokoll für Maschine-zu-Maschine-Kommunikation, welches die Übermittlung telemetrischer Daten-Meldungen zwischen Geräten liefert. Der integrierte MQTT-Client erlaubt es dem Gerät, ein spezifisches Set an Informationen an einen MQTT-Broker zu veröffentlichen.

Die Veröffentlichung der Meldungen kann entweder periodisch auftreten oder manuell getriggert werden.

Achtung: Bei Verwendung von MQTT muss das OPC UA-Protokoll deaktiviert sein.

14.1.1 MQTT-Konfiguration

Im **Auslieferungszustand** sind die MQTT-Funktionen **deaktiviert**. Der MQTT-Client kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP/HTTPS request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel MQTT-Konfiguration - Schnellstart-Anleitung auf Seite 180.

Die Konfigurations-URL lautet:

```
http://[ip-address]/w/config/mqtt.json
```

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

```
http://[ip-address]/r/config/mqtt.json
```

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden

geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
mqtt-enable	boolean	Master switch for the MQTT client.	true / false
broker	string	IP address of the MQTT Broker	"192.168.1.1"
login	string	Username for MQTT Broker	"admin" (Default: null)
password	string	Password for MQTT Broker	"private" (Default: null)
port	number	Broker port	1883
base-topic	string	Base topic	"iomodule_[mac]" (Default: " lionx ")
will-enable	boolean	If true, the device provides a last will message to the broker	true / false
will-topic	string	The topic for the last will message.	(Default: null)
auto-publish	boolean	If true, all enabled domains will be published automatically in the specified interval.	true / false
publish-interval	number	The publish interval in ms if auto- publish is enabled. Minimum is 250 ms.	2000
publish-identity	boolean	If true, all identity domain data will be published	true / false
publish-config	boolean	If true, all config domain data will be published	true / false
publish-status	boolean	If true, all status domain data will be published	true / false
publish-process	boolean	If true, all process domain data will be published	true / false
publish-devices	boolean	If true, all IO-Link Device domain data will be published	true / false
commands-allowed	boolean	Master switch for MQTT commands. If false, the device will not subscribe to any command topic, even if specific command topics are activated below.	true / false
force-allowed	boolean	If true, the device accepts force commands via MQTT.	true / false

Element	Datentyp	Beschreibung	Beispieldaten
reset-allowed	boolean	If true, the device accepts restart and factory reset commands via MQTT.	true / false
config-allowed	boolean	If true, the device accepts configuration changes via MQTT.	true / false
qos	number	Selects the "Quality of Service" status for all published messages.	0 = At most once 1 = At least once 2 = Exactly once

Tabelle 22: MQTT-Konfiguration

MQTT-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

- ▶ Ein nicht wohlgeformtes JSON-Objekt verursacht einen Fehler.
- ▶ Nicht existierende Parameter verursachen einen Fehler.
- ▶ Parameter mit falschem Datentyp verursachen einen Fehler.

Es ist nicht erlaubt alle verfügbaren Parameter auf einmal zu schreiben. Sie sollten nur einen oder eine geringe Anzahl an Parametern auf einmal schreiben.

Beispiele:

```
{"status": -1, "error": [{"Element": "publish-interval", "Message": "Integer
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

Für mehr Informationen, beachten Sie das Kapitel MQTT-Topics auf Seite 167.

14.1.2 MQTT-Topics

MQTT bezieht sich hauptsächlich auf Topics. Alle Meldungen werden einem Topic angehängt, welches der Nachricht selbst Kontext hinzufügt. Topics können aus jeder Art von String bestehen und dürfen Schrägstriche (/)so wie Wildcard-Symbole (*, #) beinhalten.

14.1.2.1 Base-Topic

Für alle LioN-X-Varianten gibt es ein konfigurierbares Base-Topic, welches das Präfix für alle Topics darstellt. Das Base-Topic kann vom Nutzer frei gewählt werden. Das Base-Topic kann ebenfalls ausgewählte Variablen beinhalten, wie in Tabelle 23: Base-Topic-Variablen auf Seite 167 gezeigt.

Variablen im Base-Topic müssen in eckigen Klammern ("[]") geschrieben werden. Die folgenden Variablen sind möglich:

Variable	Beschreibung	
mac	The MAC address of the device	
name	The name of the device	
order	The ordering number of the device	
serial	The serial number of the device	

Tabelle 23: Base-Topic-Variablen

Beispiel:

Das Base-Topic "io_[mac]" wird in "io_A3B6F3F0F2F1" übersetzt.

Alle Daten sind in Domains organisiert. Der Domain-Name ist das erste Level im Topic nach dem Base-Topic. Beachten Sie folgende Schreibweise:

Base-Topic/domain/.....

Es gibt folgende Domains:

Domain-Name	Definition	Beispielinhalt
identity	All fixed data which is defined by the used hardware and which cannot be changed by configuration or at runtime.	Device name, ordering number, MAC address, port types, port capabilites and more.
config	Configuration data which is commonly loaded once at startup, mostly by a PLC.	IP address, port modes, input logic, failsafe values and more.
status	All (non-process) data which changes quite often in normal operation.	Bus state, diagnostic information, IO- Link Device status and data.
process	All process data which is produced and consumed by the device itself or by attached devices.	Digital inputs, digital outputs, cyclic IO- Link data.
iold	IO-Link Device parameters according to the IO-Link specification.	Vendor name, product name, serial number, hardware revision, software revision and more.

Tabelle 24: Daten-Domains

Oft gibt es ein Topic für alle Gateway-bezogenen Informationen und Topics für jeden Port. Alle Identity-Topics werden nur einmal beim Gerätestart veröffentlicht, da diese Information statisch sein sollte. Alle anderen Topics werden, abhängig von ihrer Konfiguration, entweder in einem festen Intervall veröffentlicht oder manuell ausgelöst.

Topic	Beispielinhalt	Veröffent- lichungs- Zähler gesamt	Veröffent- lichungs- Intervall
[base-topic]/identity/ gateway	Name, ordering number, MAC, vendor, I&M etc.	1	Startup
[base-topic]/identity/ port/n	Port name, port type	8	Startup
[base-topic]/config/ gateway	Configuration parameters, ip address etc.	1	Interval
[base-topic]/config/port/ n	Port mode, data storage, mapping, direction	8	Interval
[base-topic]/status/ gateway	Bus state, device diagnosis, master events	1	Interval
[base-topic]/status/port/ n	Port or channel diagnosis, IO-Link state, IO- Link Device events	8	Interval
[base-topic]/process/ gateway	All Digital IN/OUT	1	Interval
[base-topic]/process/ port/n	Digital IN/OUT per port, IOL-data, pdValid	8	Interval
[base-topic]/iold/port/n	IO-Link Device parameter	8	Interval

Tabelle 25: Datenmodell

Ein MQTT-Client, der eines oder mehrere dieser Topics abonnieren möchte, kann auch Wildcards verwenden.

Gesamtes Topic	Beschreibung		
[base-topic]/identity/gateway	Receive only indentity objects for the gateway		
[base-topic]/identity/#	Receive all data related to the identity domain		
[base-topic]/status/port/5	Receive only status information for port number 5		
[base-topic]/+/port/2	Receive information of all domains for port number 2		
[base-topic]/process/port/#	Receive only process data for all ports		
[base-topic]/config/#	Receive config data for the gateway and all ports.		

Tabelle 26: Anwendungsbeispiele

14.1.2.2 Publish-Topic

Übersicht über alle Publish-JSON-Daten für die definierten Topics:

Eingabe	Datentyp
product_name	json_string
ordering_number	json_string
device_type	json_string
serial_number	json_string
mac_address	json_string
production_date	json_string
fw_name	json_string
fw_date	json_string
fw_version	json_string
hw_version	json_string
vendor_name	json_string
vendor_address	json_string
vendor_phone	json_string
vendor_email	json_string
vendor_techn_support	json_string
vendor_url	json_string
vendor_id	json_integer
device_id	json_integer

Tabelle 27: Identity/gateway

Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
fieldbus_protocol	json_string	PROFINET, EtherNet/IP, EtherCAT®		
ip_address	json_string		192.168.1.1	
subnet_mask	json_string		255.255.255.0	
report_alarms	json_boolean		0.0.0.0	
report_ul_alarm	json_boolean	true / false	true	
report_do_fault_without_ul	json_boolean	true / false	false	
force_mode_lock	json_boolean	true / false	false	
web_interface_lock	json_boolean	true / false	false	
do_auto_restart	json_boolean	true / false	true	
fast_startup	json_boolean	true / false	false	PROFINET and EIP only

Tabelle 28: Config/gateway

Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
protocol	json_string	wait_for_io_system wait_for_io_Connection failsafe connected error		
ethernet_port1	json_string	100_mbit/s_full 100_mbit/s 10_mbit/s_full 100_mbit/s		
ethernet_port2	json_string	100_mbit/s_full 100_mbit/s 10_mbit/s_full 100_mbit/s		
module_restarts	json_integer	0 4294967295		
channel_diagnosis	json_boolean	true / false		
failsafe_active	json_boolean	true / false		
system_voltage_fault	json_boolean	true / false		
actuator_voltage_fault	json_boolean	true / false		
internal_module_error	json_boolean	true / false		
simulation_active_diag	json_boolean	true / false		
us_voltage	json_integer	0 32		in Volts
ul_voltage	json_integer	0 32		in Volts
forcemode_enabled	json_boolean	true / false		

Tabelle 29: Status/gateway

Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
Input_data	json_integer[]			
output_data	json_integer[]			

Tabelle 30: Process/gateway

Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
port	json_integer	18		
type	json_string	digital_universal digital_input digital_Output io_link		
max_output_power_cha	json_string	2.0_mA 0.5_mA		
max_output_power_chb	json_string	2.0_mA 0.5_mA		
channel_cha	json_string	input/output input output io_link aux		
channel_chb	json_string	input/output input output io_link aux		

Tabelle 31: Identity/port/1 .. 8

Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
port	json_integer	18		
direction_cha	json_string	input/output input output		
restart_mode_cha	json_string	Manual Auto		
restart_mode_chb	json_string	Manual Auto		
input_polarity_cha	json_string	NO NC		
input_polarity_chb	json_string	NO NC		
input_filter_cha	json_integer			ms
input_filter_chb	json_integer			ms
do_auto_restart_cha	json_boolean	true / false		
do_auto_restart_chb	json_boolean	true / false		

Tabelle 32: Config/port/1 .. 8

Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
port	json_integer	18		
physical_state_cha	json_integer	0 1		
physical_state_chb	json_integer	0 1		
actuator_short_circuit_cha	json_boolean	true / false		
actuator_short_circuit_chb	json_boolean	true / false		
sensor_short_circuit	json_boolean	true / false		
current_cha	json_integer			mA
current_chb	json_integer			mA
current_pin1	json_integer			mA

Tabelle 33: Status/port/1 .. 8

14.1.2.3 Command-Topic (MQTT Subscribe)

Der Hauptzweck von MQTT ist das Publizieren von Gerätedaten an einen Broker. Diese Daten können von allen registrierten Abonnenten (Subscriber) bezogen werden, die daran interessiert sind. Andersherum ist es aber auch möglich, dass das Gerät selbst ein Topic auf dem Broker abonniert hat und dadurch Daten erhält. Diese Daten können Konfigurations- oder Forcing-Daten sein. Dies erlaubt dem Nutzer die vollständige Kontrolle eines Gerätes ausschließlich via MQTT, ohne die Verwendung anderer Kommunikationswege wie Web oder REST.

Wenn die Konfiguration grundsätzlich Commands zulässt, abonniert das Gerät spezielle Command-Topics, über die es Befehle anderer MQTT-Clients erhalten kann. Das Command-Topic basiert auf dem Base-Topic. Es hat immer die folgende Form:

[base-topic]/command

Nach dem Command-Topic stehen feste Topics für verschiedene schreibbare Objekte. Das Datenfomat der MQTT-Payload ist immer JSON. Es besteht die Möglichkeit, auch nur ein Subset der möglichen Objekte und Felder einzustellen.

[...]/forcing

Verwenden Sie das Command-Topic [base-topic]/command/forcing für *Force object*-Daten. Das *Force object* kann jede der folgenden Eigenschaften besitzen:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
forcemode	boolean	true / false	Forcing Authority: on/off
digital	array (Tabelle 35: Force object: Digital auf Seite 177)		
iol	array (Tabelle 36: Force object: IOL (ausschließlich IO-Link-Geräte) auf Seite 177)		

Tabelle 34: Force object – Eigenschaften

Für die *Force object*-Eigenschaften, digital und IOL, werden verschiedene Spezifikationswerte aufgereiht:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
port	integer	1, 2, 5	
channel	string	"a", "b"	
force_dir	string	"out", "in", "clear"	
force_value	integer	0, 1	

Tabelle 35: Force object: Digital

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
port	integer	0, 1, 5	
output	array[integer]	[55, 88, 120]	
input	array[integer]		Input simulation

Tabelle 36: Force object: IOL (ausschließlich IO-Link-Geräte)

[...]/config

Verwenden Sie das Command-Topic [base-topic]/command/config für *Config object*-Daten. Das *Config object* kann jede der folgenden Eigenschaften besitzen:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
portmode	array (Tabelle 38: Config object: Portmode auf Seite 178)		
ip_address	string	"192.168.1.5"	
subnet_mask	string	"255.255.255.0"	
gateway	string	"192.168.1.100"	

Tabelle 37: Config object - Eigenschaften

Für die *Config object-*Eigenschaft, portmode werden verschiedene Spezifikationswerte aufgereiht:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
port	integer	2	
channelA*	string	"dio", "di", "do", "iol", "off"	
channelB*	string	"dio", "di", "do", "iol", "off", "aux"	
inlogicA	string	"no", "nc"	
inlogicB	string	"no", "nc"	
filterA	integer	3	input filter in ms
filterB	integer	3	input filter in ms
autorestartA	boolean		
autorestartB	boolean		
iolValidation	integer	0 = NoCheck 1 = Type 1.0 2 = Type 1.1 3 = Type 1.1 BR 4 = Type 1.1 RES	
iolDeviceID	integer		for validation
iolVendorID	integer		for validation

Tabelle 38: Config object: Portmode

^{*}channelA = Pin 4, channelB = Pin 2

[...]/reset

Verwenden Sie das Command-Topic [base-topic]/command/reset für Reset object-Daten über Neustart- und Factory-Reset-Themen. Das Reset object kann jede der folgenden Eigenschaften besitzen:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
factory_reset	boolean	true / false	
system_reset	boolean	true / false	

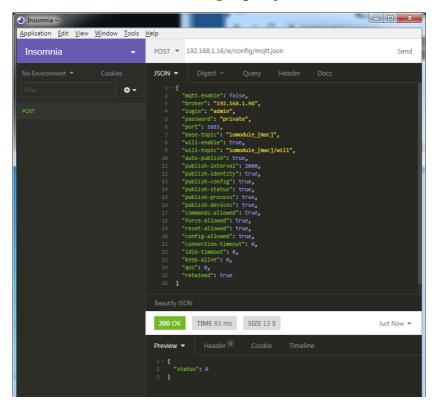
Tabelle 39: Reset object-Eigenschaften

[...]/publish

Verwenden Sie das Command-Topic [base-topic]/command/publish für *Publish object-*Daten.

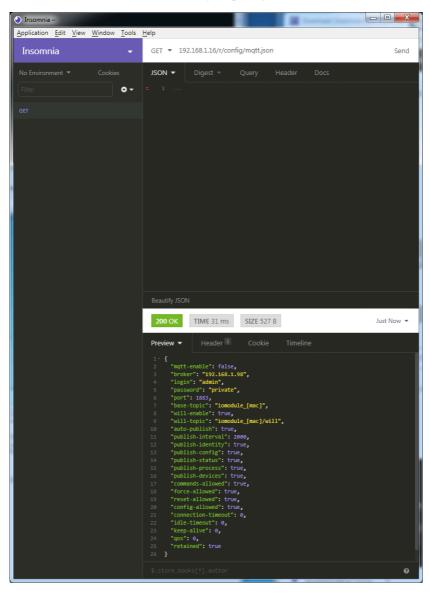
Veröffentlichung aller Topics manuell auslösen (kann verwendet werden, wenn "auto publish" ausgeschaltet ist oder wenn "long interval" eingestellt ist).

14.1.3 MQTT-Konfiguration - Schnellstart-Anleitung



Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

14.1.3.1 MQTT-Konfiguration über JSON


- **1.** Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/
- 2. MQTT konfigurieren:

POST: [IP-address]/w/config/mqtt.json

3. MQTT auslesen:

GET: [IP-address]/r/config/mqtt.json

14.2 OPC UA

OPC UA-Funktionen sind **ausschließlich** für die folgende Gerätevarianten verfügbar:

- 0980 XSL 3912-121-007D-00F
- 0980 XSL 3912-121-007D-01F
- ▶ 0980 XSL 3912-121-027D-01F
- 0980 XSL 3913-121-007D-01F
- 0980 XSL 3913-121-027D-01F

OPC Unified Architecture (OPC UA) ist ein Plattform-unabhängiger Standard mit einer Service-orientierten Architektur für die Kommunikation in und mit industriellen Automationssystemen.

Der OPC UA-Standard basiert auf dem Client-Server-Prinzip und lässt Maschinen und Geräte, unabhängig von bevorzugten Feldbussen, genauso horizontal untereinander wie vertikal mit dem ERP-System oder der Cloud kommunizieren. LioN-X stellt einen OPC UA-Server auf Feld-Geräte-Ebene bereit, mit dem sich ein OPC UA-Client für eine datensichere Informationsübertragung verbinden kann.

Bei OPC UA halten wir uns (bis auf die nachfolgend genannten Ausnahmen) an die "IO-Link Companion Specification", welche Sie auf catalog.belden.com oder direkt auf io-link.com herunterladen können.

Achtung: Bei Verwendung von OPC UA muss das MQTT-Protokoll deaktiviert sein.

Feature	Unterstützung
Managing IODDs	Nicht unterstützt
(Kapitel 6.1.6 in der Spezifikation)	Alt I a a a a a a a a a a a a a a a a a a
Mapping IODD information to OPC UA ObjectTypes (Kapitel 6.3 in der Spezifikation)	Nicht unterstützt
IOLinkIODDDeviceType (Kapitel 7.2 ff. in der Spezifikation)	Nicht unterstützt
ObjectTypes generated based on IODDs (Kapitel 7.3 ff. in der Spezifikation)	Nicht unterstützt
Creation of Instances based on ObjectTypes generated out of IODDs (Kapitel 7.4 in der Spezifikation)	Nicht unterstützt
IODDManagement Object (Kapitel 8.2 in der Spezifikation)	Nicht unterstützt
RemovelODD Method (Kapitel 8.3 in der Spezifikation)	Nicht unterstützt

Tabelle 40: Nicht unterstützte OPC UA-Features innerhalb der "IO-Link Companion Specification"

14.2.1 OPC UA-Konfiguration

Im **Auslieferungszustand** sind die OPC UA-Funktionen **deaktiviert**. Der OPC UA-Server kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP/HTTPS request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel OPC UA-Konfiguration - Schnellstart-Anleitung auf Seite 186.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/opcua.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/opcua.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden

geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
port	integer	Server port for the OPC UA server.	0, 4840 , 0xFFFF
opcua-enable	boolean	Master switch for the OPC UA server.	true / false
anon-allowed	boolean	If true, anonymous login is allowed.	true / false
commands-allowed	boolean	Master switch for OPC UA commands. If false there will be no writeable OPC UA objects.	true / false
force-allowed	boolean	If true, the device accepts force commands via OPC UA.	true / false
reset-allowed	boolean	If true, the device accepts restart and factory reset commands via OPC UA.	true / false
config-allowed	boolean	If true, the device accepts configuration changes via OPC UA.	true / false

Tabelle 41: OPC UA-Konfiguration

Alle Konfigurationselemente sind optional und an keine bestimmte Reihenfolge gebunden. Nicht jedes Element muss gesendet werden. Dies bedeutet, dass nur Konfigurationsänderungen übernommen werden.

Optional: Die Konfigurations-Parameter von OPC UA können direkt über das Web-Interface eingestellt werden. Für das Sharing mit weiteren Geräten, können Sie das Web-Interface herunterladen.

Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem Statusfeld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

Beispiele:

```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

14.2.2 OPC UA Address-Space

OPC UA bietet verschiedene Dienste auf den LioN-X-Geräten an, mit denen ein Client durch die Address-Space-Hierarchie navigieren und Variablen lesen oder schreiben kann. Zusätzlich kann der Client bis zu 10 Attribute des Address-Space bezüglich Wert-Veränderungen beobachten.

Eine Verbindung zu einem OPC UA-Server wird über die Endpoint-URL erreicht:

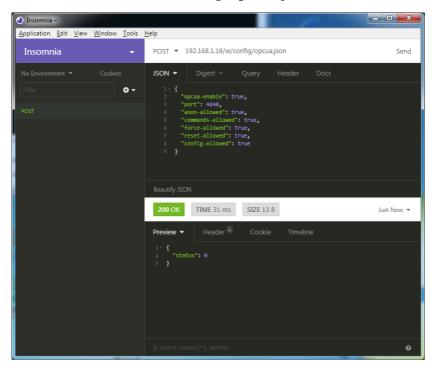
```
opc.tcp://[ip-address]:[port]
```

Verschiedene Geräte-Daten wie die MAC-Adresse, Geräteeinstellungen, Diagnosen oder Status-Informationen können via *Identity objects*, *Config objects*, *Status objects* und *Process objects* ausgelesen werden.

Command objects können gelesen und geschrieben werden. Dadurch ist es möglich, beispielsweise neue Netzwerk-Parameter an das Gerät zu übertragen, um Force-Mode zu verwenden oder um das komplette Gerät auf die Werkseinstellungen zurückzusetzen.

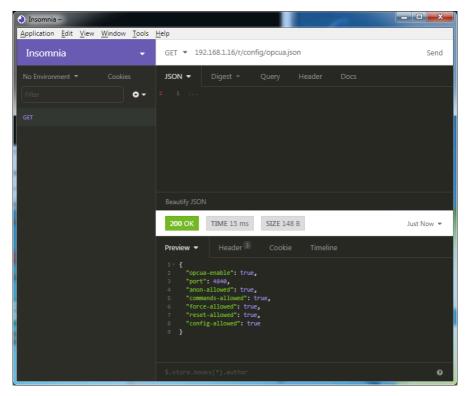
Die folgenden Grafiken zeigen den OPC UA Address-Space der LioN-X-Geräte. Die dargestellten Objekte und Informationen sind abhängig von der verwendeten Gerätevariante.

14.2.3 OPC UA-Konfiguration - Schnellstart-Anleitung



Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

14.2.3.1 OPC UA-Konfiguration über JSON


- **1.** Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/
- 2. OPC UA konfigurieren:

POST: [IP-address]/w/config/opcua.json

3. OPC UA auslesen:

GET: [IP-address]/r/config/opcua.json

14.3 REST API

Die "Representational State Transfer – Application Programming Interface (REST API)" ist eine programmierbare Schnittstelle, die HTTP/HTTPS-Anfragen für GET- und POST-Daten verwendet. Dies ermöglicht den Zugriff auf detaillierte Geräteinformationen.

Für alle LioN-X-Varianten kann die REST API verwendet werden, um den Geräte-Status auszulesen. Für die LioN-X Multiprotokoll-Varianten kann die REST API zusätzlich dafür verwendet werden, Konfigurations- und Forcing-Daten zu schreiben.

Es stehen zwei verschiedene REST API-Standards für die Anfragen zur Verfügung:

1. Eine standardisierte REST API, die von der IO-Link Community spezifiziert wurde und separat beschrieben ist:

```
JSON_Integration_10222_V100_Mar20.pdf
```

Bitte laden Sie die Datei von catalog.belden.com oder direkt von iolink.com herunter.

Achtung: Beachten Sie die folgende Tabelle für einen Überblick über die unterstützten Features innerhalb der IO-Link-Spezifikation:

Feature		Unterstützt
Gateway	GET /identification	JA
	GET /capabilities	JA
	GET /configuration	JA
	POST /configuration	JA
	POST /reset	JA
	POST /reboot	JA
	GET /events	JA

Feature		Unterstützt
Master	GET /masters	JA
	GET /capabilities	JA
	GET /identification	JA
	POST /identification	JA
Port	GET /ports	JA
	GET /capabilities	JA
	GET /status	JA
	GET /configuration	JA
	POST /configuration	JA
	GET /datastorage	JA
	POST /datastorage	JA
Devices	GET /devices	JA
	GET /capabilities	JA
	GET /identification	JA
	POST /identification	JA
	GET /processdata/value	JA
	GET /processdata/getdata/value	JA
	GET /processdata/setdata/value	JA
	POST /processdata/value	JA
	GET /parameters	Nicht unterstützt
	GET /parameters/{index}/subindices	Nicht unterstützt
	GET /parameters/{parameterName}/subindices	Nicht unterstützt
	GET /parameters/{index}/value	Nicht unterstützt
	GET /parameters/{index}/subindices/{subindex}/value	Nicht unterstützt
	GET /parameters/{parameterName}/value	Nicht unterstützt
	GET /parameters/{parameterName}/subindices/ {subParameterName}/value	Nicht unterstützt
	POST /parameters/{index}/value	Nicht unterstützt
	POST /parameters/{parameterName}/value	Nicht unterstützt
	POST /parameters/{index}/subindices/{subindex}/value	Nicht unterstützt

Feature		Unterstützt
	POST /parameters/{parameterName}/subindices/ {subParameterName}/value	Nicht unterstützt
	POST /blockparametrization	
	GET /events	JA
IODD	GET /iodds	Nicht unterstützt
	POST /iodds/file	Nicht unterstützt
	DELETE /iodds	
	GET /iodds/file	Nicht unterstützt

Tabelle 42: Unterstützte REST API-Features innerhalb der IO-Link-Spezifikation

2. Eine angepasste Belden REST API, welche in den folgenden Kapiteln beschrieben ist.

14.3.1 Standard Geräte-Information

Request-Methode: http GET

Request-URL: <ip>/info.json

Parametern.a.Response-FormatJSON

Ziel des "Standard device information"-Request ist es, ein komplettes Abbild des aktuellen Geräte-Status zu erhalten. Das Format ist JSON. Für IO-Link-Geräte sind alle Ports mit den verbundenen IO-Link-Geräteinformationen mit inbegriffen.

14.3.2 Struktur

Name	Datentyp	Beschreibung	Beispiel
name	string	Device name	"0980 XSL 3912- 121-007D-00F"
order-id	string	Ordering number	"935 700 001"
fw-version	string	Firmware version	"V.1.1.0.0 - 01.01.2021"
hw-version	string	Hardware version	"V.1.00"
mac	string	MAC address of the device	"3C B9 A6 F3 F6 05"
bus	number	0 = No connection 1 = Connection with PLC	1
failsafe	number	0 = Normal operation 1 = Outputs are in failsafe	0
ip	string	IP address of the device	
snMask	string	Subnet Mask	
gw	string	Default gateway	
rotarys	array of numbers (3)	Current position of the rotary switches: Array element 0 = x1 Array element 1 = x10 Array element 2 = x100	
ulPresent	boolean	True, if there is a UL voltage supply detected within valid range	
usVoltage_mv	number	US voltage supply in mV	
ulVoltage_mv	number	UL voltage supply in mV (only available for devices with UL supply)	
inputs	array of numbers (2)	Real state of digital inputs. Element 0 = 1 Byte: Port X1 Channel A to Port X4 Channel B Element 0 = 1 Byte: Port X5 Channel A to Port X8 Channel B	\[128,3\]
output	array of numbers (2)	Real State of digital outputs. Element 0 =1 Byte: Port X1 Channel A to port X4 Channel B Element 0 = 1 Byte: Port X5 Channel A to port X8 Channel B	\[55,8\]

Name	Datentyp	Beschreib	ung	Beispiel
consuming	array of numbers (2)	Cyclic data from PLC to device		
producing	array of numbers (2)	Cyclic data from device to PLC		
diag	array of numbers (4)	Diagnostic information	Element 0 = 1 Byte: Bit 7: Internal module error (IME) Bit 6: Forcemode active Bit 3: Actuator short Bit 2: Sensor short Bit 1: U _L fault Bit 0: U _S fault Element 1 = 1 Byte: Sensor short circuit ports X1 X8. Element 2 = 1 Byte: Actuator short circuit ports X1 Channel A to X4 Channel B Element 3 = 1 Byte: Actuator short circuit ports X5 Channel A to X8 Channel B	
fieldbus	FIELDBUS Object			
FIELDBUS Object				
fieldbus_name	string	Currently us	sed fieldbus	
state	number	Fieldbus sta	ate	
state_text	number	Textual representate: 0 = Unknow 1 = Bus dis 2 = Preop 3 = Connect 4 = Error 5 = Stateles	connected	
forcing	FORCING Object	Information the device	about the forcing state of	
channels	Array of CHANNEL (16)	Basic inforr channels	nation about all input/output	

Name	Datentyp	Beschreibung	Beispiel
iol	IOL Object	Contains all IO-Link related information such as events, port states, device parameters.	
iol/diagGateway	array of DIAG	Array of currently active device/ gateway related events	
iol/diagMaster	array of DIAG	Array of currently active IOL-Master related events	
iol/ports	array of PORT (8)	Contains one element for each IO-Link port	
CHANNEL Object			
name	string	Name of channel	
type	number	Hardware channel type as number: 0 = DIO 1 = Input 2 = Output 3 = Input/Output 4 = IO-Link 5 = IOL AUX 6 = IOL AUX with DO 7 = IOL AUX with DO. Can be deactivated. 8 = Channel not available	
type_text	string	Textual representation of the channel type	
config	number	Current configuration of the channel: 0 = DIO 1 = Input 2 = Output 3 = IO-Link 4 = Deactivated 5 = IOL AUX	
config_text	string	Textual representation of the current config	
inputState	boolean	Input data (producing data) bit to the PLC	
outputState	boolean	Output data bit to the physical output pin	

Name	Datentyp	Beschreibung	Beispiel
forced	boolean	True, if the output pin of this channel is forced	
simulated	boolean	True, if the input value to the PLC of this channel is simulated	
actuatorDiag	boolean	True, if the output is in short circuit / overload condition	
sensorDiag	boolean	True, if the sensor supply (Pin 1) is in short circuit / overload condition	
maxOutputCurrent _mA	number	Maximum output current of the output in mA	
current_mA	number	Measured current of the output in mA (if current measurement is available)	
voltage_mV	number	Measured voltage of this output in mV (if voltage measurement is available)	
PORT Object			
port_type	string	Textual representation of the IO-Link port type	
iolink_mode	number	Current port mode: 0 = Inactive 1 = Digital output 2= Digital input 3 = SIO 4 = IO-Link	
iolink_text	string	Textual representation of the current port mode	"Digital Input"
aux_mode	number	Indicates the configured mode for the Pin 2: 0 = No AUX 1 = AUX output (always on) 2 = Digital output (can be controlled by cyclic data) 3 = Digital input	
aux_text	string	Textual representation of the current aux mode	"AUX Output"
cq_mode	number	Port mode according to IOL specification	
iq_mode	number	Pin2 mode according to IOL specification	

Name	Datentyp	Beschreibung	Beispiel
port_status	number	Port status according to IOL specification	
ds_fault	number	Data storage error number	
ds_fault_text	string	Textual data storage error.	
device	DEVICE Object	IO-Link device parameters. → Null if no IO-Link communication active	
diag	array of DIAG (n)	Array of port related events	
DIAG Object			
error	number	Error code	
source	string	Source of the current error.	"device" "master"
eventcode	number	Event code according to IO-Link specification	
eventqualifier	number	Event qualifier according to IO-Link specification	
message	string	Error message	"Supply Voltage fault"
DEVICE Object		Standard parameters of the IOL- Device	
device_id	number		
vendor_id	number		
serial	string		
baudrate	string	Baudrate (COM1,2,3)	
cycle_time	number	Cycle time in microseconds	
input_len	array of numbers (n)	IOL input length in bytes	
output_len	array of numbers (n)	IOL output length in bytes	
input_data	array of numbers (n)	IOL input data	
output_data	array of numbers (n)	IOL output data	
pd_valid	number	"1", if IOL input data is valid	
pdout_valid	number	"1", if IOL output data is valid	
FORCING Object		Forcing information of the device	
forcingActive	boolean	Force mode is currently active	

Name	Datentyp	Beschreibung	Beispiel
forcingPossible	boolean	True, if forcing is possible and force mode can be activated	
ownForcing	boolean	True, if forcing is performed by REST API at the moment	
forcingClient	string	Current forcing client identifier	
digitalOutForced	array of numbers (2)	The force values of all 16 digital output channels.	
digitalOutMask	array of numbers (2)	The forcing mask of all 16 digital output channels.	
digitalInForced	array of numbers (2)	The force values of all 16 digital input channels.	
digitalInMask	array of numbers (2)	The forcing mask of all 16 digital input channels.	

14.3.3 Konfiguration und Forcing

Methode: POST

URL: <ip>/w/force.json

Parameter: None

Post-Body: JSON-Objekt

Eigenschaft	Datentyp	Beispielwerte	Beschreibung
forcemode	boolean	true / false	Forcing authority on/off
portmode	array (Port mode object)		
digital	array (Digital object)		
iol	array (IOL object)		

Tabelle 43: Root object

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
port	integer	07	
channel	integer	"a","b"	optional default is "a"
direction	string	"dio","di","do","iol", "off", "aux"	
aux	string	"dio","di","do","iol", "off", "aux"	IOL only, but optional
inlogica	string	"no","nc"	
inlogicb	string	"no","nc"	
inputlatch	bool	true / false	enable/disable input latch, optional
inputext	integer	Abhängig vom Feldbus: ■ eip: 0 (off) - 255 (ms) ■ ethercat: 0 (off) - 255 (ms) ■ pns: 0 (off), 1 (8 ms), 2 (16 ms), 3 (64 ms) ■ cclink: 0 (off) - 255 (ms) ■ mbtcp: 0 (off) - 255 (ms)	set input extension, optional
inputfilter	integer	0 255	set input filter, optional

Tabelle 44: Port mode object

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
port	integer	07	
channel	string	"a","b"	
force_dir	string	"phys_out","plc_in","clear"	optional default is "phys_out"
force_value	integer	0,1	

Tabelle 45: Digital object

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
port	integer	07	
output	array[integer] or null to clear forcing	[55,88,120]	Output forcing
input	array[integer] or null to clear forcing	[20,0,88]	Input simulation to PLC

Tabelle 46: IOL object

14.3.4 Auslesen und Schreiben von ISDU-Parametern

Die *Indexed Service Data Unit* (ISDU) bietet ein äußerst flexibles Nachrichtenformat, welches Einfach- oder Mehrfach-Befehle beinhalten kann.

LioN-X IOL-Master mit IIoT unterstützen das Auslesen und das Schreiben von ISDU-Parametern des angeschlossenen IOL-Devices. Es ist möglich, dies als Bulk-Transfer durch Auslesen und Schreiben multipler ISDU-Parameter über eine Einzelanfrage durchzuführen.

14.3.4.1 ISDU auslesen

Methode: POST

URL: <ip>/r/isdu.json

Parameter: port (0-7)

Beispiel: 192.168.1.20/r/isdu.json?port=5

Post-Body: JSON array of read ISDU object

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
ix	integer	0-INT16	Index to be read
subix	integer	0-INT8	Subindex to be read

Tabelle 47: "ISDU object" auslesen

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
status	integer	0, -1	0 = no error, -1= an error occured
message	string		Error Message if error occured
data	array (Read ISDU data object)		data, if no error occured. otherweise null

Tabelle 48: "ISDU response object" auslesen

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
ix	integer	0-INT16	Index that was read
subix	integer	0-INT8	Subindex that was read
status	integer	0, -1	0 = no error, -1= an error occured
eventcode	integer		IOL eventcode if status is -1
data	array[integer]		data, if no error occured. otherweise null

Tabelle 49: "ISDU data object" auslesen

14.3.4.2 ISDU schreiben

Methode: POST

URL: <ip>/w/isdu.json

Parameter: port (0-7)

Post-Body: JSON array of write ISDU object

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
ix	integer	0-INT16	Index to be read
subix	integer	0-INT8	Subindex to be read
data	array[integer]		Data to be written

Tabelle 50: "ISDU object" schreiben

Response: Write ISDU response object

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
status	integer	0, -1	0 = no error, -1= an error occured
message	string		Error Message if error occured
data	array (Write ISDU data object)		data, if no error occured. otherweise null

Tabelle 51: "ISDU response object" schreiben

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
ix	integer	0-INT16	Index that was written
subix	integer	0-INT8	Subindex that was written
status	integer	0, -1	0 = no error, -1= an error occured
eventcode	integer		IOL eventcode if status is -1

Tabelle 52: "ISDU data object" schreiben

Achtung: Für LioN-X Gerätevarianten with HTTPS-Funktion muss in jeder REST API https:// vor <ip> verwendet werden.

14.3.5 IODD-Datei hochladen und verarbeiten

Die REST API unterstützt den Upload von IODD-Dateien in den IO-Link Master.

Führen Sie die folgenden Arbeitsschritte durch:

1. Datei-Upload-Status überprüfen

Anfrage senden: GET file upload

Zweck: Abrufen des Datei-Upload-Status, um zu prüfen, ob ein weiterer Upload im Gange ist.

Erwartete Meldung:

```
{
    "status": 0,
    "progress": 0,
    "name": "",
    "action": 0,
    "upid": 0,
    "errid": 0,
    "errstr": "",
    "pschr": 0
}
```

Prüfen Sie die Status-ID. Wenn der Status '0' ist, können Sie einen neuen IODD-Upload-Prozess starten. Zur Referenz, siehe Tabelle 53: Status-ID und Bedeutung auf Seite 206 und Tabelle 54: Error-ID und Bedeutung auf Seite 207. Fahren Sie mit dem nächsten Schritt fort.

2. Datei-Upload einleiten

Anfrage senden: POST file_upload

Content-Typ: application/json

Zweck: Senden Sie Details über die hochzuladende Datei.

Erwartete Meldung:

```
{"size":<total size>, "name":"<file name>",

"action":"iodd", "upid":

<upload id>}
{
    "size": <total size>,
    "name": "<file name>",
    "action": "iodd",
    "upid": <upload id>}
}
```

Die Upload-ID (upid) ist eine Nummer, die vom Backend verwendet wird, um einen bestimmten Upload- und Parsing-Prozess zu identifizieren. Sie muss in den folgenden Schritten als Abfrageparameter verwendet werden.

Die Aktion wird immer iodd sein.

Die Größe ist die Gesamtgröße der Datei in Bytes.

Der richtige Content-Typ muss eingestellt werden.

Hinweis: Merken Sie sich die Upload-ID (upid) für die nachfolgenden Schritte.

3. Datei-Inhalt hochladen

Anfrage senden: POST file_upload?upid=<value> \rightarrow Verwenden Sie den upid-Wert aus Schritt 2.

Content-Typ: application/octet-stream \rightarrow Es muss der korrekte Content-Typ eingestellt werden.

Zweck: Senden einer Datei oder von Datei-Blöcken (maximale Blockgröße: 64 KB).

Achtung: Das Senden von Dateien, die größer als 64 KB sind, führt zu einem nicht-responsiven Verhalten.

4. Upload-Status überwachen

Anfrage senden: GET file_upload?upid=<value> \rightarrow Verwenden Sie den upid-Wert aus Schritt 2.

Zweck: Abfrage des aktuellen Datei-Upload-Status.

Erwartete Meldung:

```
{
  "status": <status id value>,
  "progress": <percentage>,
  "name": "<file name given in step 2>",
  "action": "iodd",
  "upid": <upload id chosen in step 2>,
  "errid": <error id>,
  "errstr": "",
  "pschr": <count of parsed characters>
}
```

Wiederholen Sie diesen Schritt, bis der Zustand 'idle' erreicht ist. Bei einigen Zuständen löst diese Anfrage notwendige Transitionen im internen Status aus. Erst wenn das Backend sicher darüber sein kann, dass der richtige, durch seine upid identifizierte Client die Aktion beendet oder den Fehlerzustand erhalten hat, geht es in den nächsten Zustand, 'idle', über.

Die Felder zeigen nun Werte an, die davon abhängen, was in Schritt 2 gesendet wurde, und vom aktuellen Prozessstatus.

Status-ID	Status
0	File upload idle. New upload can be triggered.
1	File upload started.
2	File upload in progress.
3	File upload finished.
4	Error during file upload.
5	File upload timeout.
6	IODD parsing started.
7	IODD parsing finished.
8	IODD parsing error.
9	IODD parsing canceled.

Tabelle 53: Status-ID und Bedeutung

ID	Error
0	No error.
1	Json parsing error.
2	Json type error.
4	Upload error.
5	File opening error.
6	File writing error.
7	Thread creating error.
8	Error during file copy.
9	Upload timeout.
10	Upload size exceeded.
11	Unknown action.
12	No upload id.
13	IODD paasing error.
14	Internal error.
15	IODD store full. Delete an IODD before uploading a new one.
16	Internal error.
17	IODD file CRC error.
18	Standard IODD file crc error.
19	No available space for parsing.

Tabelle 54: Error-ID und Bedeutung

14.3.6 Beispiel: ISDU auslesen

ISDU read request

Response

14.3.7 Beispiel: ISDU schreiben

ISDU write request

```
[
    {"ix":24,"subix":0,"data":[97,98,99,100,101,102]},
    {"ix":9,"subix":0,"data":[97,97,97,97,97,98]}
]
```

Response

14.4 CoAP-Server

CoAP-Server-Funktionen sind **ausschließlich** für folgende Gerätevarianten verfügbar:

- 0980 XSL 3912-121-007D-00F
- 0980 XSL 3912-121-007D-01F
- ▶ 0980 XSL 3912-121-027D-01F
- 0980 XSL 3913-121-007D-01F
- 0980 XSL 3913-121-027D-01F

Das Constrained Application Protocol (CoAP) ist ein spezialisiertes Internet-Anwendungsprotokoll für eingeschränkte Netzwerke wie verlustbehaftete oder stromsparende Netzwerke. CoAP ist vor allem in der M2M-Kommunikation (Machine to Machine) hilfreich und kann dafür verwendet werden, vereinfachte HTTP/HTTPS-Anfragen von Low-Speed-Netzwerken zu übersetzen.

CoAP basiert auf dem Server-Client-Prinzip und ist ein Service-Layer-Protokoll, mit dem Knoten und Maschinen miteinander kommunizieren können. Die LioN-X Multiprotokoll-Varianten stellen mittels einer REST-API-Schnittstelle über UDP die CoAP-Server-Funktionalitäten zur Verfügung.

14.4.1 CoAP-Konfiguration

Im Auslieferungszustand sind die CoAP-Funktionen *deaktiviert*. Der CoAP-Server kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP/HTTPS request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel CoAP-Konfiguration - Schnellstart-Anleitung auf Seite 214.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/coapd.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/coapd.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden

geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
enable	boolean	Master-Switch für den CoAP-Server	true / false
port	integer (0 bis 65535)	Port des CoAP-Servers	5683

Tabelle 55: CoAP-Konfiguration

CoAP-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

Beispiele:

```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}
{"status": 0}
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

14.4.2 REST API-Zugriff via CoAP

Die Verbindung zum CoAP-Server auf den LioN-X Multiprotokoll-Varianten kann über folgende URL hergestellt werden:

```
coap://[ip-address]:[port]/[api]
```

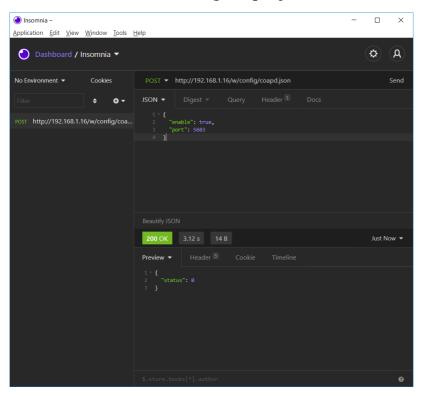
Für LioN-X können Sie via CoAP-Endpoint auf die folgenden REST API-Anfragen (JSON-Format) zugreifen:

Тур	API	Hinweis
GET	/r/status.lr	
GET	/r/system.lr	
GET	/info.json"	
GET	/r/config/net.json	
GET	/r/config/mqtt.json	
GET	/r/config/opcua.json	
GET	/r/config/coapd.json	
GET	/r/config/syslog.json	
GET	/contact.json	
GET	/fwup_status	
GET	/iolink/v1/gateway/identification	
GET	/iolink/v1/gateway/capabilities	
GET	/iolink/v1/gateway/configuration	
GET	/iolink/v1/gateway/events	
GET	/iolink/v1/masters	
GET	/iolink/v1/masters/1/capabilities	
GET	/iolink/v1/masters/1/identification	
GET	/iolink/v1/masters/1/ports	
GET	/iolink/v1/masters/1/ports/{port_number}/capabilities	Die API ist für alle 8 Ports verfügbar. {port_number} sollte zwischen "1" und "8" gewählt werden.
GET	/iolink/v1/masters/1/ports/{port_number}/status	Die API ist für alle 8 Ports verfügbar. {port_number} sollte zwischen "1" und "8" gewählt werden.
GET	/iolink/v1/masters/1/ports/{port_number}/configuration	Die API ist für alle 8 Ports verfügbar. {port_number} sollte zwischen "1" und "8" gewählt werden.
GET	/iolink/v1/devices/master1port{port_number}/identification	Die API ist für alle 8 Ports verfügbar. {port_number} sollte zwischen "1" und "8" gewählt werden.

Тур	API	Hinweis
GET	/iolink/v1/devices/master1port{port_number}/capabilities	Die API ist für alle 8 Ports verfügbar. {port_number} sollte zwischen "1" und "8" gewählt werden.
GET	/iolink/v1/devices/master1port{port_number}/processdata/ getdata/value	Die API ist für alle 8 Ports verfügbar. {port_number} sollte zwischen "1" und "8" gewählt werden.
GET	/iolink/v1/devices/master1port{port_number}/events	Die API ist für alle 8 Ports verfügbar. {port_number} sollte zwischen "1" und "8" gewählt werden.

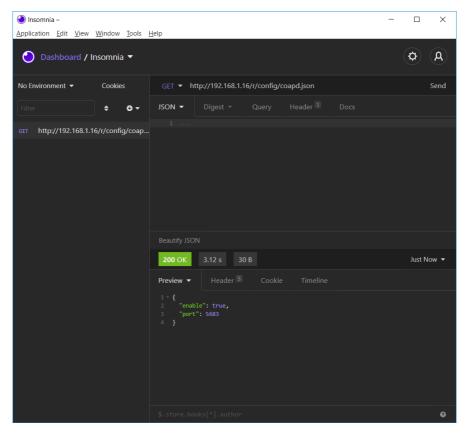
Tabelle 56: REST API-Zugriff via CoAP

14.4.3 CoAP-Konfiguration - Schnellstart-Anleitung



Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

14.4.3.1 CoAP-Konfiguration über JSON


- **1.** Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/
- 2. CoAP konfigurieren:

POST: [IP-address]/w/config/coapd.json

3. CoAP-Konfiguration auslesen:

GET: [IP-address]/r/config/coapd.json

14.5 Syslog

Syslog-Funktionen sind **ausschließlich** für folgende Gerätevarianten verfügbar:

- 0980 XSL 3912-121-007D-00F
- 0980 XSL 3912-121-007D-01F
- ▶ 0980 XSL 3912-121-027D-01F
- 0980 XSL 3913-121-007D-01F
- 0980 XSL 3913-121-027D-01F

Die LioN-X Multiprotokoll-Varianten stellen einen Syslog-Client zur Verfügung, der sich mit einem konfigurierten Syslog-Server verbinden kann und in der Lage ist, Meldungen zu protokollieren.

Syslog ist ein plattformunabhängiger Standard für die Protokollierung von Meldungen. Jede Meldung enthält einen Zeitstempel sowie Informationen über den Schweregrad und das Subsystem. Das Syslog-Protokoll RFC5424 basiert auf dem Server-Client-Prinzip und lässt Maschinen und Geräte Nachrichten im Netzwerk senden und zentral sammeln. (Für weitere Details zum verwendeten Syslog-Standard, gehen Sie auf https://datatracker.ietf.org/doc/html/rfc5424.)

LioN-X unterstützt die Speicherung von 256 Meldungen in einem Ringspeicher, die an den konfigurierten Syslog-Server gesendet werden. Wenn der Ring mit 256 Meldungen voll ist, wird jeweils die älteste Meldung durch die neu eintreffenden Meldungen ersetzt. Auf dem Syslog-Server können alle Meldungen gespeichert werden. Der Syslog-Client des IO-Link Master speichert keine der Meldungen dauerhaft.

14.5.1 Syslog-Konfiguration

Im **Auslieferungszustand** sind die Syslog-Funktionen **deaktiviert**. Der Syslog-Client kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP/HTTPS request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel Syslog-Konfiguration - Schnellstart-Anleitung auf Seite 220.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/syslog.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/syslog.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
syslog-enable	boolean	Master-Switch für den Syslog Client	true / false
global-severity	integer	Meldegrad des Syslog Client 0 – Emergency 1 – Alert 2 – Critical 3 – Error 4 – Warning 5 – Notice 6 – Info 7 – Debug Der Client speichert alle Meldungen des eingestellten Schweregrads, inklusive aller Meldungen mit niedrigerem Level.	0/1/2/ 3 /4/5/6/7
server-address	string (IP- Adresse)	IP-Adresse des Syslog-Servers	192.168.0.51 (Default: null)
server-port	integer (0 bis 65535)	Server-Port des Syslog-Servers	514
server-severity	integer (0 bis 7)	Meldegrad des Syslog-Servers 0 – Emergency 1 – Alert 2 – Critical 3 – Error 4 – Warning 5 – Notice 6 – Info 7 – Debug	0/1/2/ 3 /4/5/6/7

Tabelle 57: Syslog-Konfiguration

Syslog-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

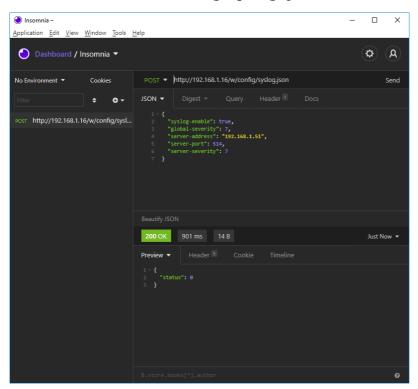
Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

Beispiele:

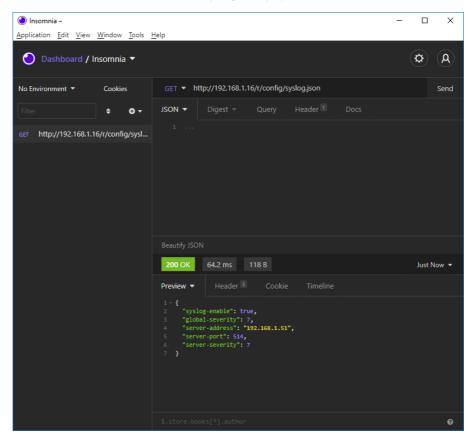
```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}
{"status": 0}
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

14.5.2 Syslog-Konfiguration - Schnellstart-Anleitung



Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

14.5.2.1 Syslog-Konfiguration über JSON


- **1.** Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/
- 2. Syslog konfigurieren:

POST: [IP-address]/w/config/syslog.json

3. Syslog-Konfiguration auslesen:

GET: [IP-address]/r/config/syslog.json

14.6 Network Time Protocol (NTP)

Die NTP-Funktion ist ausschließlich für folgende Gerätevarianten verfügbar:

- 0980 XSL 3912-121-007D-00F
- ▶ 0980 XSL 3912-121-007D-01F
- 0980 XSL 3912-121-027D-01F
- ▶ 0980 XSL 3913-121-007D-01F
- 0980 XSL 3913-121-027D-01F

Die LioN-X Multiprotokoll-Varianten stellen einen NTP-Client (Version 3) zur Verfügung, der sich mit einem konfigurierten NTP-Server verbinden kann und in der Lage ist, die Netzwerkzeit in einem konfigurierbaren Interval zu synchronisieren.

NTP ist ein Netzwerkprotokoll, das UDP-Datagramme zum Senden und Empfangen von Zeitstempeln verwendet, um sie mit einer lokalen Uhr zu synchronisieren. Das NTP-Protokoll RFC1305 basiert auf dem Server-Client-Prinzip und unterstützt ausschließlich die Synchronisation mit der Universalzeit "Coordinated Universal Time" (UTC). (Für weitere Details zum verwendeten NTP-Standard, gehen Sie auf https://datatracker.ietf.org/doc/html/rfc1305.)

14.6.1 NTP-Konfiguration

Im **Auslieferungszustand** ist der NTP-Client **deaktiviert**. Der NTP-Client kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP/HTTPS request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel NTP-Konfiguration - Schnellstart-Anleitung auf Seite 224.

Die Konfigurations-URL lautet:

```
http://[ip-address]/w/config/ntpc.json
```

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

```
http://[ip-address]/r/config/ntpc.json
```

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden

geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
NTP-Client- Status	boolean	Master-Switch für den NTP-Client	true / false
Server-Adresse	string	IP-Adresse des NTP-Servers	192.168.1.50
Server-Port	integer	Port des NTP-Servers	123
Update-Intervall	integer	Intervall, in dem sich der Client mit dem konfigurierten NTP-Server verbindet (siehe Tabellenzeile "Server-Adresse"). Hinweis: Der Wert wird in	1/2/10/ 60
		Sekunden angegeben.	

Tabelle 58: NTP-Konfiguration

NTP-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

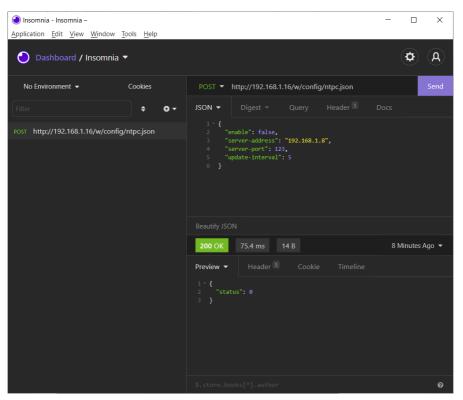
Beispiele:

```
{"status": -1, "error": [{"Element": "ntpc-enable", "Message": "Boolean
expected"}]}

{"status": 0}

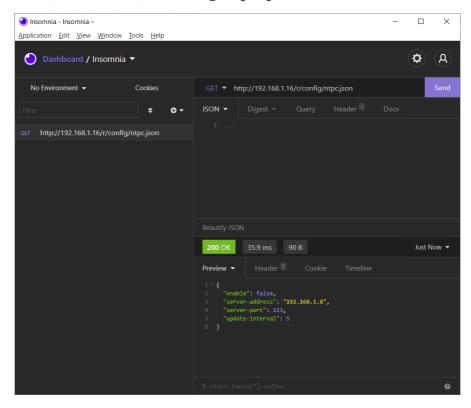
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

14.6.2 NTP-Konfiguration - Schnellstart-Anleitung


Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

14.6.2.1 NTP-Konfiguration über JSON

1. Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/


2. NTP konfigurieren:

POST: [IP-address]/w/config/ntpc.json

3. NTP-Konfiguration auslesen:

GET: [IP-address]/r/config/ntpc.json

15 Integrierter Webserver

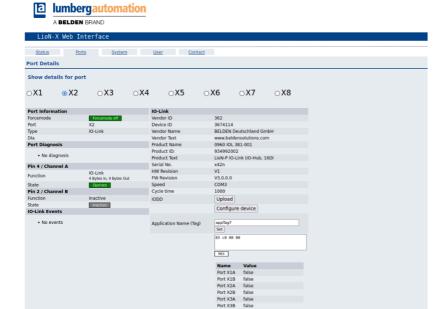
Alle Gerätevarianten verfügen über einen integrierten Webserver, welcher Funktionen für die Konfiguration der Geräte und das Anzeigen von Statusund Diagnoseinformationen über ein Web-Interface zur Verfügung stellt.

Das Web-Interface bietet einen Überblick über die Konfiguration und den Status des Gerätes. Es ist über das Web-Interface ebenfalls möglich, einen Neustart, ein Zurücksetzen auf die Werkseinstellungen oder ein Firmware-Update durchzuführen.

Geben Sie in der Adresszeile Ihres Webbrowsers "http://" oder "https://" gefolgt von der IP-Adresse ein, z. B. "http://192.168.1.5". Falls sich die Startseite der Geräte nicht öffnet, überprüfen Sie Ihre Browser- und Firewall-Einstellungen.

15.1 LioN-X 0980 XSL... - Varianten

15.1.1 Status-Seite

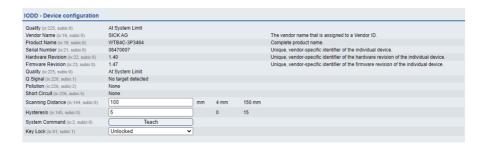

Die Status-Seite bietet einen schnellen Überblick über den aktuellen Zustand des Gerätes.

Die linke Seite zeigt eine grafische Darstellung des Moduls mit allen LEDs und den Positionen der Drehkodierschalter.

Auf der rechten Seite zeigt die Tabelle "Device Information" (Geräteinformationen) einige grundlegende Daten zum Modul, wie z. B. die Variante, den Zustand der zyklischen Kommunikation und einen Diagnoseindikator. Dieser zeigt an, ob eine Diagnose im Modul vorliegt.

Die Tabelle "Port Information" (Port-Informationen) zeigt die Konfiguration und den Zustand der I/O-Ports.

15.1.2 Port-Seite


Neben ausführlichen Port-Informationen werden im Feld **Port Diagnosis** eingehende sowie ausgehende Diagnosen als Klartext angezeigt. **Pin 2** und **Pin 4** enthalten Informationen zur Konfiguration und zum Zustand des Ports. Bei IO-Link-Ports werden zusätzlich Informationen zum angeschlossenen Sensor und dessen Prozessdaten angezeigt.

15.1.2.1 IODD-Upload

Die Schaltfläche **UPLOAD** ermöglicht das Hochladen einer IODD-Datei in das Modul, unabhängig von dem Gerät, für das die IODD bestimmt ist.

Die maximale Anzahl von IODDs ist aufgrund des Speicherplatzes begrenzt. Wenn kein Platz mehr für eine neue IODD vorhanden ist, erscheint eine Meldung über den festgestellten Fehler.

Mit Hilfe der IODD-Managementseite ("System page") können nicht verwendete IODDs gelöscht werden. Ist für das angeschlossene IO-Link-Gerät bereits eine passende IODD im System hinterlegt, wird die Schaltfläche **CONFIGURE** angezeigt. Durch Anklicken dieser Schaltfläche wird die Seite "IODD - Device configuration" geöffnet, auf der das IO-Link-Gerät konfiguriert werden kann.

15.1.3 Systemseite

Die Systemseite zeigt die grundlegende Informationen zum Modul an wie die Firmware-Version, Geräte-Informationen, Ethernet-, Netzwerk- und Feldbus-Informationen.

IP Settings

Verwenden Sie diesen Parameter, um die aktuelle IP-Adresse des Moduls anzupassen.

Diese Funktion ist für PROFINET nur bei der Inbetriebnahme von Nutzen. Normalerweise findet die SPS die IP-Adresse beim Start-Up über den PROFINET-Gerätenamen heraus und stellt diese automatisch ein.

15.1.3.1 Lizenz

Diese Schaltfläche öffnet ein neues Fenster mit Informationen zu Open-Source-Software, die in diesem Produkt verwendet wird.

15.1.3.2 Konfiguration Upload/Download

Mit dieser Funktion können Einstellungen, die über das Web-Interface konfiguriert wurden, außerhalb des I/O-Devices gespeichert werden (Download), um sie später, z.B. nach einem I/O-Device-Wechsel, wieder hochzuladen.

Die folgenden Einstellungen werden in dieser Datei gespeichert:

Bereich	Тур	Einstellung	Optionen	Details
Gateway		deviceID		To check device identity.
	iol	applicationSpecificTag		
	iol	functionTag		
	iol	locationTag		
		forcing		Enable/disable forcing
		channel_count		
		network configuration	ip	
		1	snMask	
]	gw	
			source	1 - manual 2 - dhcp 3 - rotary 4 - dcp
Channel		index		channel index starting from 0
		channel configuration		0 - DIO 1 - IN 2 - OUT 3 - IOL 4 - AUX 5 - SAFIN 6 - SAFOUT
	iol	forced		
	iol	simulated		
	iol	force values		array
	iol	simulated		
	iol	sim values		array
	iol	validation	option	validation and
			vendorld	backup
			deviceId	7
	digital	force		

Bereich	Тур	Einstellung	Optionen	Details
	digital	force value		
	digital	simulate		
	digital	sim value		
	digital	inputPolarity		
	digital	autorestart mode		
	digital	inputFilter100us		
	digital	currentLimit		
	digital	outputRestartMode		
	digital	failsafeMode		
	digital	surveillanceTimeouMs		
OPC UA		opcua	opcua-enable	
			port	
			anon-allowed	
			commands- allowed	
			force-allowed	
			reset-allowed	
			config-allowed	
	digital		dcu-allowed	
MQTT		mqtt	mqtt-enable	
			broker	
			login	
			password	
			port	
			base-topic	
			will-enable	
			will-topic	
			auto-publish	
			publish-interval	
			publish-identity	

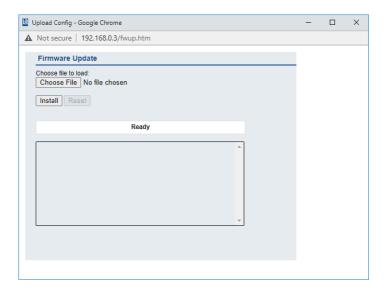
Bereich	Тур	Einstellung	Optionen	Details
			publish-config	
			publish-status	
			publish-process	
	iol		publish-devices	
			commands- allowed	
			force-allowed	
			reset-allowed	
			config-allowed	
			qos	
SYSLOG		syslog	syslog-enable	
			global-severity	
			server-address	
			server-port	
			server-severity	
COAP		соар	enable	
			port	
NTP		ntpc	enable	
			server-address	
			server-port	
			update-interval	

15.1.3.3 IODD

Die Schaltfläche **Manage IODDs** öffnet eine neue Seite für die IODD-Verwaltung auf dem I/O-Device. Auf dieser Seite können IODDs hochgeladen oder gelöscht werden, und alle hochgeladenen IODDs werden hier aufgelistet. Zur Konfiguration der angeschlossenen IO-Link-Geräte öffnen Sie die entsprechende "Ports"-Seite.

15.1.3.4 Geräte-Reset

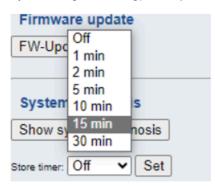
Das Modul initialisiert einen Software-Reset.


15.1.3.5 Auf Werkseinstellungen zurücksetzen

Das Modul setzt sich auf die Werkseinstellungen zurück.

15.1.3.6 Firmware-Update

Das Modul initialisiert ein Firmware-Update.


Wählen Sie für ein Firmware-Update den *.ZIP-Container, der auf unserer Website verfügbar ist, oder wenden Sie sich an unser Support-Team. Befolgen Sie anschließend die Anweisungen, die auf dem Bildschirm angezeigt werden.

15.1.3.7 Systemdiagnose

Alle Syslog-Meldungen werden in einem Ringpuffer mit 512 Einträgen angezeigt. Durch Aktivierung des 'Store Timer' wird der Pufferinhalt in dem gewählten Intervall von 1, 2, 5, 10, 15 oder 30 Minuten nichtflüchtig gespeichert.

Der Standardwert ist 'Aus (Off)' (keine nichtflüchtige Speicherung des Systemdiagnose-Ringpuffers).

15.1.3.8 HTTPS

Https-basierte oder http-basierte Kommunikation mit dem LioN-X-Webserver. Wenn diese Option ausgewählt ist, erfolgt die Kommunikation mit dem LioN-X-Webserver sicher und verschlüsselt.

15.1.3.9 HTTPS Zertifikat-Manager

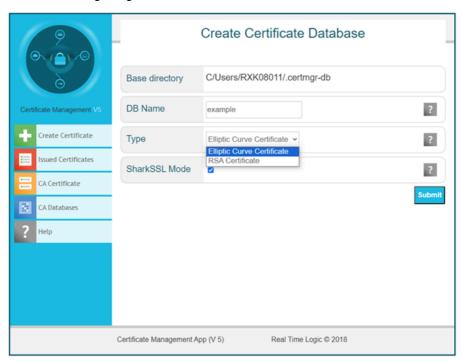
Der HTTPS Zertifikat-Manager zeigt ein Standardzertifikat und das derzeit aktive Zertifikat für den Webserver an. Sie haben die Möglichkeit, Zertifikate zu löschen, hochzuladen und neue auszuwählen. Ein Beispiel für das Erstellen und Signieren eines eigenen Zertifikats mit *Mako Server* von Real Time Logic LLC finden Sie im Kapitel Zertifikat erstellen – Beispiel auf Seite 238.

Achtung: Es ist nicht möglich, das Standardzertifikat zu löschen.

15.1.4 Benutzerseite

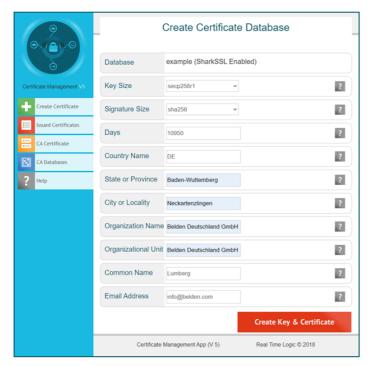
Über die Benutzerseite kann die Benutzerverwaltung für das Web-Interface vorgenommen werden. Über diese Seite können neue Benutzer mit den Zugriffsberechtigungen "Admin" oder "Write" (Schreiben) hinzugefügt werden. Ändern Sie das Admin-Standardpasswort nach der Konfiguration des Gerätes aus Sicherheitsgründen.

Standard Benutzer Login-Daten:


User: admin

Password: private

15.1.5 Zertifikat erstellen - Beispiel

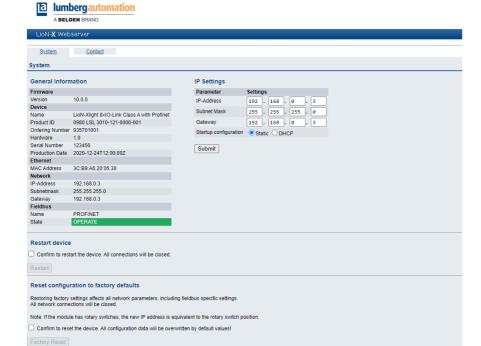

1. Zertifikatsdatenbank anlegen:

In Makro server von Real Time Logic LLC, navigieren Sie zu Create Certificate Database. Geben Sie einen Wert für DB Name ein, wählen Sie bei Type "Eliptic Curve Certificate" aus und wählen Sie SharkSSL Mode aus wie unten gezeigt.

2. Zertifikat erstellen:

- ► Key Size (Schlüsselgröße): Es kann ein beliebiger Wert aus der Dropdown-Liste ausgewählt werden. Empfohlen wird "secp256r1".
- Signature size (Größe der Signatur): "sha256" → Je höher die Zahl in der Verschlüsselung, desto höher ist die Sicherheitsstufe der Kommunikation.
- ▶ Days (Tage): Geben Sie die Anzahl der Tage ein, die das Zertifikat gültig sein soll (z. B. "3650" für 10 Jahre).
- ► Country name (Ländername): "DE" ("DE" steht für Deutschland. Für andere Länder siehe https://www.ssl.com/country-codes/).
- State or Province (Bundesland): Geben Sie Ihr Bundesland an (z. B. "Baden-Württemberg").
- ► City or Locality (Stadt oder Ortschaft): Geben Sie den Namen der Stadt ein (z. B. "Neckartenzlingen").
- ▶ Organization Name (Name der Organisation): Geben Sie den Namen der Organisation ein (z. B. "Belden Deutschland GmbH").
- ▶ Organization Unit (Organisationseinheit): Geben Sie den Namen der Organisationseinheit ein (z. B. "Belden Deutschland GmbH").
- ➤ Common Name (Allgemeiner Name): Der allgemeine Name gehört hier zum Domainnamen. Er muss ganz oder teilweise dem Domainnamen entsprechen, unter dem das LioN-X-Gerät erreichbar ist.
- ► Email address (E-Mail-Adresse): Die E-Mail-Adresse des Erstellers des Zertifikats.

3. Zertifikat auf das LioN-X-Gerät hochladen:


Im HTTPS Zertifikat-Manager (Belden Web-Interface), klicken Sie auf die Schaltfläche *Upload* und wählen Sie für den Upload die ".pem"- und ".key"- Dateien aus, die im vorherigen Schritt erstellt wurden.

Klicken Sie auf Upload.

15.2 LioN-Xlight 0980 LSL... -Varianten

15.2.1 Systemseite

Die Systemseite zeigt die grundlegende Informationen zum Modul an wie die Firmware-Version, Geräte-Informationen, Ethernet-, Netzwerk- und Feldbus-Informationen.

Restart Device (Gerät neu starten)

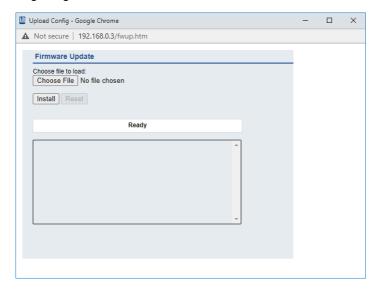
Das Modul initialisiert die Rücksetzung der Software.

Reset to Factory Settings (Auf Werkseinstellungen zurücksetzen)

Das Modul stellt die Werkseinstellungen wieder her.

FW-Update

IP Settings


Verwenden Sie diesen Parameter, um die aktuelle IP-Adresse des Moduls anzupassen.

Die ist für PROFINET nur bei der Inbetriebnahme von Nutzen. Normalerweise findet die SPS die IP-Adresse beim Start-Up über den PROFINET-Gerätenamen heraus und stellt diese automatisch ein.

Firmware Update

Das Modul initialisiert ein Firmware-Update.

Wählen Sie für ein Firmware-Update den *.ZIP-Container, der auf unserer Website verfügbar ist, oder wenden Sie sich an unser Support-Team. Befolgen Sie anschließend die Anweisungen, die auf dem Bildschirm angezeigt werden.

16 IODD

IODD-Funktionen sind **ausschließlich** für folgende Gerätevarianten verfügbar:

- 0980 XSL 3912-121-007D-00F
- 0980 XSL 3912-121-007D-01F
- ▶ 0980 XSL 3912-121-027D-01F
- ▶ 0980 XSL 3913-121-007D-01F
- 0980 XSL 3913-121-027D-01F

Die **IO D**evice **D**escription (IODD) besteht aus einem Set von Dateien, welche ein IO-Link Device formal beschreiben. Die IODD wird vom Gerätehersteller erstellt und ist für jedes IO-Link Device erforderlich.

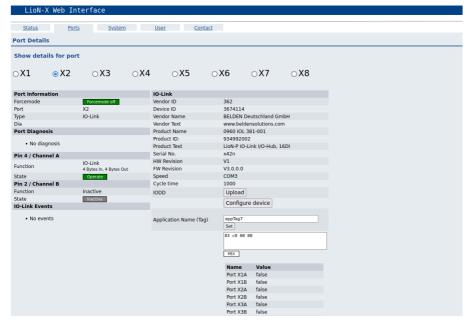
Belden LioN-X IO-Link Master mit der "IODD on Module"-Funktion können IODDs verwenden, um die IO-Link Device-Konfiguration zu erleichtern und die Prozessdaten für Menschen besser lesbar zu machen. IODDs können über das Web-Interface hochgeladen und anschließend nachhaltig auf dem IO-Link Master gespeichert werden.

Wenn ein entsprechendes IO-Link Device angeschlossen wird, wird die gespeicherte IODD verwendet, um eine benutzerfreundliche Konfigurationsseite zur Verfügung zu stellen, auf welcher alle Parameter des Gerätes betrachtet und angepasst werden können. Zusätzlich werden entsprechend der IODD ebenfalls die Prozessdaten formatiert und für den Nutzer angezeigt.

16.1 IO-Link Device-Parameter und ISDU-Anfragen

Jedes IO-Link Device bietet Parameter an, welche über den speziellen IO-Link-Service ISDU (Indexed **S**ervice **D**ata **U**nit) gelesen und geschrieben werden können.

Jeder Parameter wird von einem Index adressiert. Sub-Indices sind möglich, allerdings optional. Einige der Parameter (mehrheitlich als "read-only" gekennzeichnet) sind erforderlich für IO-Link-Geräte und können stets auf denselben Indices gefunden werden (Siehe dazu *Table B.8* in der *IO-Link Interface and System Specification*: https://io-link.com/share/Downloads/Package-2020/IOL-Interface-Spec 10002 V113 Jun19.pdf).


Der Hersteller kann weitere Parameter einsetzen und damit auch mehr Indices für seine Geräte verwenden, um dadurch zusätzliche Konfigurationsmöglichkeiten bereitzustellen. Diese herstellerspezifischen Parameter können in einer IODD beschrieben werden. Die "IODD on Module"-Funktion der LioN-X IO-Link Master kann diese Informationen aus einer IODD lesen und auswerten und sie dazu verwenden, dem Benutzer Anzeige- und Bearbeitungsoptionen für herstellerspezifische Parameter zu bieten, ohne dass er zusätzliche Kenntnisse über die herstellerspezifischen Geräteeigenschaften benötigt.

16.2 Web-GUI-Funktionen

Die "IODD on Module"-Funktionen sind über das LioN-X Web-Interface zugänglich.

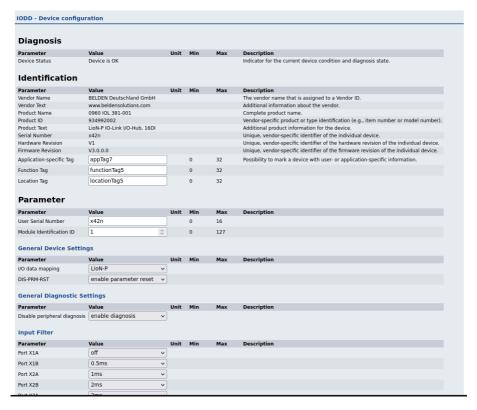
16.2.1 Port Details-Seite

Die Port Details-Seite zeigt alle Informationen über den ausgewählten Port an. In der linken Spalte werden alle Port- und Kanal-spezifischen Informationen angezeigt. Wenn der Port als IO-Link konfiguriert und ein IO-Link Device angeschlossen ist, werden alle IO-Link-Informationen für das angeschlossene Gerät in der rechten Spalte angezeigt.

IODD-Schaltflächen

Die Reihe mit dem Namen *IODD* bietet Zugang zu den "IODD on Module"-Funktionen. Die Schaltfläche *UPLOAD* lässt den Nutzer eine IODD-Datei in das Modul hochladen, unabhängig vom ursprünglichen Gerät, für welches die IODD erstellt wurde.

Die maximale Anzahl an IODDs ist durch den Speicherplatz limitiert. Sollte kein ausreichender Speicherplatz mehr für neue IODDs zur Verfügung stehen, wird eine Fehlermeldung gesendet. In diesem Fall navigieren Sie zur IODD Management-Seite, um IODDs zu löschen, die nicht länger in Gebrauch sind.


Existiert im Systemspeicher bereits eine passende IODD für das aktuell angeschlossene Gerät, wird die Schaltfläche *CONFIGURE* im Interface angezeigt. Durch Klicken auf die Schaltfläche öffnet sich die Parameter-Seite, um das Gerät zu konfigurieren.

Prozessdaten

Für jedes angeschlossene IO-Link Device werden die Prozessrohdaten der Eingangs- und Ausgangsrichtung (Bytesatz) angezeigt.

Ist bereits eine passende IODD mit Informationen über Prozessdaten im System hinterlegt, werden diese Daten ebenfalls in einem benutzerfreundlichen Format entsprechend der IODD angezeigt.

16.2.2 Parameter-Seite

Die Parameter-Seite "IODD – Device configuration" zeigt alle Parameter, die von der IODD des Gerätes zur Verfügung gestellt werden. Dies bedeutet, dass der Parameter-Satz variabel ist und vom angeschlossenen IO-Link Device abhängt.

Die hinterlegte IODD liest die Metadaten der Parameter wie Namen, Einheiten, Min/Max-Werte, Beschreibungen usw. aus. Die Werte werden direkt vom angeschlossenen Gerät bezogen. Daher dauert es möglicherweise einige Sekunden bis die Seite aktualisiert ist.

Falls noch nicht im Browser gespeichert, werden Sie nach Ihren Anmeldedaten gefragt, um fortzufahren. Um die Geräteparameter zu bearbeiten, ist ein gültiger Benutzerzugang mit Gruppenmitgliedschaft im Web-Interface erforderlich. Nach der Registrierung können Sie aktive Werte

ändern. Deaktivierte Werte können nicht geändert werden. Diese können in der IODD als schreibgeschütz("read-only") gekennzeichnet sein. Nach jeder Änderung werden alle aktuellen Werte direkt in das Gerät zurückgeschrieben.

Begrenzungen

- Das Bearbeiten von Parameterwerten ändert diese direkt im angeschlossenen Gerät. Es wird dadurch keine Parameterserver-Aktion ausgelöst.
- Es gibt eine maximale Größe der IODD, die in das System hochgeladen werden kann. Diese hängt von mehreren Werten ab wie beispielsweise Dateigröße, Anzahl der Parameter, Verschachtelungsebenen usw.

16.2.3 IODD Management-Seite

Die IODD Management-Seite über die System-Seite aufgerufen werden und zeigt alle IODDs an, die aktuell im System hinterlegt sind. Alle IODDs, die zu angeschlossenen Geräten passen, sind gekennzeichnet. Auf der IODD Management-Seite können Sie jede IODD im System manuell löschen.

Standard Definitions File

IODDs beziehen sich üblicherweise auf ein "Standard Definitions File". Bei Erstauslieferung ist das neueste "Standard Definitions File" im System bereits vorinstalliert. Sie können das "Standard Definitions File" auch manuell aktualisieren, indem Sie auf die Schaltfläche "Upload Standard Definitions File" klicken.

17 Technische Daten

Die folgenden Abschnitte geben einen Überblick über die wichtigsten funktionalen Daten für die Bedienung des Gerätes. Mehr Informationen und detaillierte technische Angaben finden Sie im entsprechenden **Datenblatt** des gewünschten Produktes auf catalog.belden.com innerhalb der Produktspezifischen Download-Bereiche .

17.1 Allgemeines

Schutzart (Gilt nur, wenn die Steckverbinder verschraubt sind oder Schutzkappen verwendet werden.) ²	IP65 IP67 IP69K	
Umgebungstemperatur (während Betrieb und Lagerung)	0980 XSL 3x12-121 0980 XSL 3x13-121	-40 °C +70 °C
	0980 LSL 3x11-121	-20 °C +60 °C
	0980 LSL 3x10-121	
Gewicht	LioN-X 60 mm	ca. 500 gr.
Umgebungsfeuchtigkeit	Max. 98 % RH (Für UL-Anwendungen: Max. 80 % RH)	
Gehäusematerial	Zinkdruckguss	
Oberfläche	Nickel matt	
Brennbarkeitsklasse	UL 94 (IEC 61010)	
Vibrationsfestigkeit (Schwingen) DIN EN 60068-2-6 (2008-11)	15 g/5–500 Hz	
Stoßfestigkeit DIN EN 60068-2-27 (2010-02)	50 g/11 ms +/- X, Y, Z	
Anzugsdrehmomente	Befestigungsschrauben M4: Erdungsanschluss M4: M12-Steckverbinder:	1 Nm 1 Nm 0,5 Nm
Zugelassene Kabel	Ethernet-Kabel nach IEEE 802.3, min. CAT 5 (geschirmt) Max. Länge von 100 m, ausschließlich innerhalb eines Gebäudes	

Tabelle 59: Allgemeine Informationen

² Unterliegt nicht der UL-Untersuchung.

17.2 EtherNet/IP Protokoll

Protokoll	EtherNet/IP, CIP V3.27		
Update-Zyklus	1 ms		
EDS-Datei	EDS-V3.27.1-BeldenDeutschland-XXX-yyyymmdd.eds		
Übertragungsrate	10/100 Mbit/s, Halb-/Vollduplex		
Übertragungsverfahren Autonegotiation	10BASE-T/100BASE-TX wird unterstützt		
RPI min.	1 ms		
Herstellerkennung (Vendor ID)	21		
Product-Typ	12 (Communications Adapter)		
Product-Code	41000 (0980 XSL 3912-121-007D-00F, 935700-001) 41001 (0980 LSL 3111-121-0006-002, 935701-002) 41002 (0980 LSL 3110-121-0006-002, 935702-002) 41003 (0980 XSL 3913-121-007D-01F, 935703-001) 41005 ((0980 XSL 3912-121-007D-01F, 935700-002) 41006 (0980 XSL 3912-121-027D-01F, 935710-001) 41007 (0980 XSL 3913-121-027D-01F, 935711-001)		
Unterstützte Ethernet-Protokolle	Ping ARP- HTTP / HTTPS TCP/IP DHCP/BOOTP		
Switch-Funktionalität	integriert		
EtherNet/IP-Schnittstelle Anschlüsse Autocrossing	2 M12-Buchsen, 4-polig, D-kodiert (siehe Anschlussbelegungen) 2 M12 Hybrid male/female, 8-polig wird unterstützt		
Galvanisch getrennte Ethernet-Ports -> FE	2000 V DC		

Tabelle 60: EtherNet/IP Protokoll

17.3 Spannungsversorgung der Modulelektronik/Sensorik

Port X03, X04	M12-L-coded Power, Stecker/Buchse, 5-polig Pin 1 / Pin 3		
Nennspannung U _S	24 V DC (SELV/PELV)		
Stromstärke U _S	Max. 16 A	-	
Spannungsbereich	21 30 V DC		
Stromverbrauch der Modulelektronik	In der Regel 160 mA (+/-	20 % bei U _S Nenns	pannung)
Spannungsunterbrechung	Max. 10 ms	-	
Restwelligkeit U _S	Max. 5 %		
Stromaufnahme Sensorsystem (L+/Pin 1)	0980 XSL 3912-121 0980 XSL 3913-121	Port X1 X8 (Pin 1)	max. 4 A pro Port (bei T _{ambient} = 30° C)
(L+/PIII I)	0980 LSL 3x11-121	Port X1 X8 (Pin 1)	max. 2 A pro Port (bei T _{ambient} = 30° C)
	0980 LSL 3x10-121	Port X1 X4 (L+ / Pin 1)	max. 2 A pro Port (bei T _{ambient} = 30° C)
		Port X5 X8 (Pin 1)	max. 0,7 A gesamt für Ports X5 X8
Spannungspegel der Sensorversorgung	Min. (U _S – 1,5 V)		
Kurzschluss-/ Überlastschutz der Sensorvers.	Ja, pro Port		
Verpolschutz	Ja		
Betriebsanzeige (U _S)	LED grün: 18 V (+/- 1 V) < U _S		S
	LED rot:	U _S < 18 V (+/- 1 V)

Tabelle 61: Informationen zur Spannungsversorgung der Modulelektronik/ Sensorik

17.4 Spannungsversorgung der Aktorik

17.4.1 IO-Link Class A-Geräte (UL)

Nennspannung U _L	24 V DC (SELV/PELV)
Spannungsbereich	18 30 V DC
Stromstärke U _L	Max. 16 A
Restwelligkeit U _L	Max. 5 %
Verpolschutz	Ja
Betriebsanzeige (U _L)	LED grün: 18 V (+/- 1 V) < U_L LED rot: U_L < 18 V (+/- 1 V) oder U_L > 30 V (+/- 1 V) * wenn "Report U_L supply voltage fault" aktiviert ist.
Port X03, X04	M12-L-coded Power, Stecker/Buchse, 5-polig Pin 2 / Pin 4

Tabelle 62: Informationen zur Spannungsversorgung der Aktorik

17.4.2 IO-Link Class A/B-Geräte (U_{AUX})

Nennspannung U _{AUX}	24 V DC (SELV/PELV)
Spannungsbereich	18 30 V DC
Stromstärke U _{AUX}	Max. 16 A
Restwelligkeit U _{AUX}	Max. 5 %
Verpolschutz	Ja
Galvanische Trennung $U_S \leftrightarrow U_{AUX}$	500 V
Betriebsanzeige (U _{AUX})	LED grün: 18 V (+/- 1 V) < U_{AUX} LED rot: U_{AUX} < 18 V (+/- 1 V) oder U_{AUX} > 30 V (+/- 1 V) * wenn "Report U_{AUX} supply voltage fault" aktiviert ist.
Port X03, X04	M12-L-coded Power, Stecker/Buchse, 5-polig Pin 2 / Pin 4

Tabelle 63: Informationen zur Spannungsversorgung der Aktorik

17.5 I/O-Ports Channel A (Pin 4)

0980 XSL 3912-121	Port X1 X8	Class A	IOL, DI, DO	M12-Buchse, 5-polig, Pin 4
0980 LSL 3x11-121	Port X1 X8	Class A	IOL, DI, DO	
0980 LSL 3x10-121	Port X1 X4	Class A	IOL, DI, DO	
	Port X5 X8	-	, DI,	
0980 XSL 3913-121	Port X1 X4	Class A	IOL, DI, DO	
	Port X5 X8	Class B	IOL, DI, DO	

Tabelle 64: IO-Link Master-Ports: Funktionsübersicht für Ch. A (Pin 4)

17.5.1 Als digitaler Eingang konfiguriert, Ch. A (Pin 4)

Eingangs- beschaltung	0980 XSL 3912-121		Typ 1 gemäß IEC 61131-2
	0980 LSL 3x11-121		7 IEC 01131-2
	0980 LSL 3x10-121		1
	0980 XSL 3913-121		
Nenneingangs- spannung	24 V DC		
Eingangsstrom	typischerweise 3 mA		
Kanaltyp	Schließer, p-schaltend		
Anzahl der	0980 XSL 3912-121	X1 X8	8
digitalen Eingänge	0980 LSL 3x11-121]	
	0980 LSL 3x10-121]	
	0980 XSL 3913-121	1	
Statusanzeige	LED gelb	-	
Diagnoseanzeige	LED rot pro Port		

Tabelle 65: I/O-Ports Ch. A (Pin 4) konfiguriert als digitaler Eingang

17.5.2 Konfiguriert als Digitalausgang, Ch. A (Pin 4)

Achtung: Die digitalen Ausgänge von Channel A werden bei den Gerätevarianten 0980 XSL 3912-121-007D-00F, 0980 XSL 3912-121-007D-01F und 0980 XSL 3912-121-027D-01F **von der U_L-Spannung versorgt**, wenn der "High-Side Switch"-Modus parametriert wurde.

Achtung: Bei den Gerätevarianten 0980 XSL 3913-121-007D-01F und 0980 XSL 3913-121-027D-01F werden die digitalen Ausgänge folgendermaßen versorgt:

▶ "X1 .. X8 / Channel A" werden von der U_S-Spannung versorgt

Achtung: Die digitalen Ausgänge von Channel A werden bei den Gerätevarianten 0980 LSL 3010-121-0006-001 und 0980 LSL 3011-121-0006-001 **von der U_S-Spannung versorgt**.

Ausgangstyp	Schließer, p-schaltend (parametriert auf "High-Side Switch"-Modus)	
Ausgangsspannung pro Kanal		
Signalstatus "1" Signalstatus "0"	min. (U _S -1 V) oder min. (U _L -1 V) max. 2 V	abhängig von der Gerätevariante
Max. Ausgangsstrom pro Gerät	0980 XSL 3912-121	9 A (Versorgung durch U _L)
	0980 XSL 3913-121	9 A (Versorgung durch U _S)
	0980 LSL 3x11-121	4 A (Versorgung durch U _S)
	0980 LSL 3x10-121	2 A (Versorgung durch U _S)
Max. Ausgangsstrom pro Kanal ³	0980 XSL 3912-121 (X1 X8)	2 A (Versorgung durch U _S)
	0980 XSL 3913-121 (X1 X8)	2 A (Versorgung durch U _S)
	0980 LSL 3x11-121 (X1 X8)	0,5 A (Versorgung durch U _S)
	0980 LSL 3x10-121 (X1 X4)	0,25 A für UL-Anwendungen

Max. 2,0 A pro Kanal; für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8 max. 6,5 A (für **UL-Anwendungen** max. 5,0 A); für die ganze Port-Gruppe X1 .. X8 max. 9,0 A gesamt (mit Derating).

Kurzschlussfest/überlastfest	ja / ja		
Verhalten bei Kurzschluss oder Überlast	Abschaltung mit automatischem Einschalten (parametriert)		
Anzahl der digitalen Ausgänge	0980 XSL 3912-121 (X1 X8)	8	
	0980 XSL 3913-121 (X1 X8)		
	0980 LSL 3x11-121 (X1 X8)		
	0980 LSL 3x10-121 (X1 X4)	4	
Statusanzeige	LED gelb pro Ausgang		
Diagnoseanzeige	LED rot pro Port		

Tabelle 66: I/O-Ports Ch. A (Pin 4) konfiguriert als digitaler Ausgang

17.5.3 Konfiguriert als IO-Link-Port im COM-Modus, Ch. A

IO-Link Master- Spezifikation	v1.1.3 ready, IEC 61131-9	
Übertragungsraten	4,8 kBaud (COM 1) 38,4 kBaud (COM 2) 230,4 kBaud (COM 3)	
Leitungslängen im IO-Link Device	max. 20 m	
Anzahl IO-Link-Ports	0980 XSL 3912-121 (X1 X8)	8
	0980 XSL 3913-121 (X1 X8)	8
	0980 LSL 3x11-121 (X1 X8)	8
	0980 LSL 3x10-121 (X1 X4)	4
Min. IO-Link Zykluszeit	400 μs	

Tabelle 67: Konfiguriert als IO-Link-Port im COM-Modus

17.6 I/O-Ports Channel B (Pin 2)

0980 XSL 3912-121	Port X1 X8	Class A	DI, DO	M12-Buchse, 5-polig, Pin 2
0980 LSL 3x11-121	Port X1 X8	Class A	DI	
0980 LSL 3x10-121	Port X1 X4	Class A	DI	
	Port X5 X8	-	DI	
0980 XSL 3913-121	Port X1 X4	Class A	DI, DO	
	Port X5 X8	Class B	DO, U _{AUX}	

Tabelle 68: IO-Link Master-Ports: Funktionsübersicht für Ch. B (Pin 2)

17.6.1 Als digitaler Eingang konfiguriert, Ch. B (Pin 2)

Eingangs-	0980 XSL 3912-121		Typ 1 gemäß IEC 61131-2
beschaltung	0980 XSL 3913-121		IEC 61131-2
	0980 LSL 3x11-121		
	0980 LSL 3x10-121	'	
Nenneingangs- spannung	24 V DC		
Eingangsstrom	typischerweise 3 mA		
Kanaltyp	Schließer, p-schaltend		
Anzahl der	0980 XSL 3912-121	X1 X8	8
digitalen Eingänge	0980 XSL 3913-121	X1 X4	4
	0980 LSL 3x11-121	X1 X8	8
	0980 LSL 3x10-121	X1 X8	8
Statusanzeige	LED weiß		
Diagnoseanzeige	LED rot pro Port		

Tabelle 69: I/O-Ports Ch. B (Pin 2) konfiguriert als digitaler Eingang

17.6.2 Konfiguriert als Digitalausgang, Ch. B (Pin 2)

Achtung: Die digitalen Ausgänge von Channel B werden bei den Gerätevarianten 0980 XSL 3912-121-007D-00F, 0980 XSL 3912-121-007D-01F und 0980 XSL 3912-121-027D-01F **von der U**_L-**Spannung versorgt**.

Achtung: Bei den Gerätevarianten 0980 XSL 3913-121-007D-01F und 0980 XSL 3913-121-027D-01F werden die digitalen Ausgänge folgendermaßen versorgt:

- "X1 .. X4 / Channel B" werden von der U_S-Spannung versorgt
- ▶ "X5 .. X8 / Channel B" werden von der U_{AUX}-Spannung versorgt

Achtung: Die digitalen Ausgänge von Channel B werden bei den Gerätevarianten 0980 LSL 3010-121-0006-001 und 0980 LSL 3011-121-0006-001 **von der U_S-Spannung versorgt**.

Ausgangstyp	Schließer, p-schaltend		
Ausgangsspannung pro Kanal Signalstatus "1" Signalstatus "0"	min. (U _S -1 V) oder min. (U _L -1 V) oder min. (U _{AUX} -1 V) abhängig von der Gerätevariante max. 2 V		
Max. Ausgangsstrom pro Gerät	0980 XSL 3912-121	9 A (Versorgung durch U _L)	
	0980 XSL 3913-121	8 A (Versorgung durch U _{AUX})	
	0980 LSL 3x11-121	4 A (Versorgung durch U _S)	
	0980 LSL 3x10-121	2 A (Versorgung durch U _S)	
Max. Ausgangsstrom pro Kanal	0980 XSL 3912-121	X1 X8: 2 A (Versorgung durch U _S)	
4,0	0980 XSL 3913-121	X1 X4: 2 A (Versorgung durch U _S)	
		X5 X8: 2 A (Versorgung durch U _{AUX})	
	0980 LSL 3x11-121	0 A (keine Ausgänge auf Ch. B)	
	0980 LSL 3x10-121	0 A (keine Ausgänge auf Ch. B)	
Kurzschlussfest/überlastfest	ja / ja		
Verhalten bei Kurzschluss oder Überlast	Abschaltung mit automatis	chem Einschalten (parametriert)	
Anzahl der digitalen Ausgänge	0980 XSL 3912-121	8	
	0980 XSL 3913-121	8	
	0980 LSL 3x11-121	_	
	0980 LSL 3x10-121	-	
Statusanzeige	LED weiß pro Ausgang		
Diagnoseanzeige	LED rot pro Port		

Tabelle 70: I/O-Ports Ch. B (Pin 2) konfiguriert als digitaler Ausgang

⁴ Für Class A-Geräte: Max. 2,0 A pro Kanal; für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8 max. 6,5 A (für **UL-Anwendungen** max. 5,0 A); für die ganze Port-Gruppe X1 .. X8 max. 9,0 A gesamt (mit Derating).

⁵ Für Class A/B-Geräte: Max. 2,0 A pro Kanal; für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8 max. 6,5 A (für **UL-Anwendungen** max. 5,0 A); für die Port-Gruppe X5/X6/X7/X8 max. 5,0 A aus U_{AUX}; für die ganze Port-Gruppe X1 .. X8 max. 9,0 A gesamt (mit Derating).

17.7 LEDs

LED	Farbe	Beschreibung
U _L /U _{AUX}	Grün	Hilfssensor-/Aktuatorspannung OK
		18 V (+/- 1 V) < U _L /U _{AUX} < 30 V (+/- 1 V)
	Rot [*]	Hilfssensor-/Aktuatorspannung NIEDRIG
		U_L/U_{AUX} < 18 V (+/- 1 V) oder U_L/U_{AUX} > 30 V (+/- 1 V)
		*wenn "Report U _L /U _{AUX} supply voltage fault" aktiviert ist.
	AUS	Keiner der zuvor beschriebenen Zustände.
Us	Grün	System-/Sensorspannung OK
		18 V (+/- 1 V) < U _S < 30 V (+/- 1 V)
	Rot	System-/Sensorspannung NIEDRIG
		U _S < 18 V (+/- 1 V) oder U _S > 30 V (+/- 1 V)
	Rotes Blinken	Gerät wird auf Werkseinstellungen zurückgesetzt (Position der Drehkodierschalter: 9-7-9)
	AUS	Keiner der zuvor beschriebenen Zustände.
X1 X8 A	Grün	IO-Link COM Mode: IO-Link-Kommunikation vorhanden.
	Grünes Blinken	IO-Link COM Mode: IO-Link-Kommunikation nicht vorhanden.
	Gelb	Standard-I/O Mode: Status des Digitaleingangs oder
		Ausgang an C/Q-(Pin 4-)Leitung.
	AUS	Keiner der zuvor beschriebenen Zustände.
X1 X8 B	Weiß	Status digitaler Eingang und digitaler Ausgang an Pin-2-Leitung "Ein".
	Rot	Überlast oder Kurzschluss an Pin 4- und Pin 2-Leitung.
		/ Alle Modi: Überlast oder Kurzschluss an Leitung L+ (Pin 1) / Kommunikationsfehler
	ALIO	<u> </u>
	AUS	Keiner der zuvor beschriebenen Zustände.
P1 Lnk / Act P2 Lnk / Act	Grün	Ethernet-Verbindung zu einem weiteren Teilnehmer vorhanden. Link erkannt.
	Gelbes Blinken	Datenaustausch mit einem anderen Teilnehmer.
	AUS	Keine Verbindung zu weiterem Teilnehmer. Kein Link, kein Datenaustausch.

LED	Farbe		Beschreibung	
BF	Rot		Bus Fault. Keine Konfiguration, keine oder langsame physikal. Verbindung.	
	Rotes Blinken mit 2 Hz		Link vorhanden, aber keine Kommunikationsverbindung zur EtherNet/IP-Steuerung.	
	AUS		EtherNet/IP-Steuerung hat eine aktive Verbindung zum Gerät aufgebaut.	
DIA	Rot		EtherNet/IP Modul-Diagnostik-Alarm aktiv.	
	Rotes Blinken mit 1 Hz		Watchdog Time-out; FailSafe Mode ist aktiv.	
	Rotes Blinken mit 2 Hz, 3 sec		DCP-Signal-Service wird über den Bus ausgelöst.	
	Rotes Doppelblinken		Firmware-Update	
	AUS		Keiner der zuvor beschriebenen Zustände	
MS	Grün		Gerät ist betriebsbereit.	
	Grünes Blinken		Gerät ist bereit, jedoch noch nicht konfiguriert.	
	Rot		Schwerwiegender Fehler, der nicht behoben werden kann	
	Rotes Blinken		Geringfügiger Fehler, der behoben werden kann	
			Beispiel: Eine fehlerhafte oder konfligierende Konfiguration wird als geringfügiger Fehler klassifiziert.	
	Abwechselndes Blinken:		Das Gerät führt einen Selbsttest durch.	
	Rot	Grün		
	AUS		Das Gerät ist deaktiviert.	

LED	Farbe		Beschreibung	
NS	Grün		Verbunden: Das Gerät weist mindestens 1 Connection auf.	
	Grünes Blinken		Keine Connection: Das Gerät weist keine Connection auf. IP-Adresse vorhanden.	
	Rot		Doppelte IP-Adresse: Das Gerät hat festgestellt, dass die zugeordnete IP-Adresse bereits von einem anderen Gerät verwendet wird.	
	Rotes Blinken		Die Connection hat das Zeitlimit überschritten oder die Connection ist unterbrochen.	
	Abwechselndes Blinken:		Das Gerät führt einen Selbsttest durch.	
	Rot	Grün		
	AUS		Das Gerät ist ausgeschaltet oder dem Gerät ist keine IP- Adresse zugeordnet.	

Tabelle 71: Informationen zu den LED-Farben

17.8 Datenübertragungszeiten

Die folgenden Tabellen bieten eine Übersicht der internen Datenübertragungszeiten eines LioN-X IO-Link Master mit angeschlossenem IO-Link Device als digitale I/O-Erweiterung (Belden-Artikel 0960 IOL 380-021 16DIO Hub mit einer Zykluszeit von mindestens 1 ms).

Es gibt drei gemessene Datenrichtungswerte für jeden Anwendungsfall:

- ▶ SPS zu DO: Übertragung von geänderten SPS-Ausgangsdaten zum IO-Link Device Digitalausgang.
- ▶ DI zu SPS: Übertragung eines geänderten digitalen Eingangssignals am IO-Link Device zur SPS.
- ▶ Round-trip time (RTT): Übertragung von geänderten SPS-Ausgangsdaten zum IO-Link Device Digitalausgang. Der digitale Ausgang ist an einen digitalen Eingang am IO-Link Device angeschlossen. Übertragung eines geänderten digitalen Eingangssignals am IO-Link Device zur SPS. RTT = [SPS zu DO] + [DI zu SPS].

Die gemessenen Werte sind der Ethernet-Datenübertragungsstrecke entnommen. Daher sind die Werte ohne SPS-Prozesszeiten und SPS-Zykluszeiten angegeben.

Der konfigurierbare digitale Eingangsfilterwert an 0960 IOL 380-021 wurde auf "off" (0 ms) gesetzt.

Um nutzerabhängige Datenübertragung und Round-Trip-Zeiten möglicher Eingangsfilter berechnen zu können, müssen SPS-Prozesszeiten und Zykluszeiten miteinbezogen werden.

Die gemessenen Werte sind gültig für ein Maximum von 48 Bytes an IO-Link-Daten für den IO-Link Master in jede Richtung (Input/Output).

Anwendungsfall 1:

IO-Link Master-Konfiguration mit aktiviertem Web-Interface bei *deaktivierten* IIoT-Protokollen

Datenrichtung	Datenübertragungszeit in ms				
	Minimum	Durchschnitt	Maximum		
SPS zu DO	3.7	6.0	7.7		
DI zu SPS	1.1	3.0	4.3		
RTT	6.1	8.9	11.1		

Anwendungsfall 2:

IO-Link Master-Konfiguration mit aktiviertem Web-Interface bei *aktivierten* IIoT-Protokollen

Datenrichtung	Datenübertragungszeit in ms				
	Minimum	Durchschnitt	Maximum		
SPS zu DO	7.7	10.0	13.4		
DI zu SPS	3.3	4.4	5.6		
RTT	12.1	14.3	17.0		

18 Zubehör

Unser Angebot an Zubehör finden Sie auf unserer Website:

https://www.belden.com