
Manual

LioN-P µDCU
Distributed Control Unit

LioN-P Digital
LDMicro
0980 ESL 393-121-DCU1
0980 ESL 390-121-DCU1
µDCU Programming Manual

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

Technical Support
support-automation@belden.com

http://www.beldensolutions.com

Contents

Contents

1 About This Manual 5
1.1 General Information 5
1.2 Version information 6

2 Introduction 7

3 Explanation of terms 8

4 Cyclic Data and Parameters 9
4.1 Consuming Data 9
4.2 Producing Data 9
4.3 Data Exchange 10

4.3.1 PROFINET 10
4.3.2 EtherNet/IP 11
4.3.3 EtherCAT 13

4.4 Module Parameters 14
4.4.1 DCU startup parameter 14

5 Technical Data 15
5.1 DCU / Forcemode LED description 15
5.2 Port types 16

5.2.1 0980 ESL 393-121-DCU1 (LioN-P 8DI8DO with DCU) 16
5.2.2 0980 ESL 390-121-DCU1 (LioN-P 16DIO with DCU) 17

5.3 Electrical Specifications 17

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

ii

Contents

6 DCU Programming Details 18
6.1 µDCU / LDMicro Limitations 18
6.2 LDMicro 19

6.2.1 LDMicro Introduction 19
6.2.2 Filetypes 20
6.2.3 Datatypes 20
6.2.4 Naming conventions 21

6.2.4.1 LDMicro conventions 21
6.2.4.2 LioN-P µDCU conventions 21

6.2.5 Available Data 22
6.2.6 Physical inputs and outputs 23
6.2.7 Direct access to cyclic bits 23
6.2.8 Reading and manipulating consuming and producing data by

channel 24
6.2.9 Data Exchange 25

7 DCU Web Interface 26
7.1 Web Interface element overview 26
7.2 Username and Password 27
7.3 DCU States 27
7.4 Uploading a program into the DCU 27
7.5 Program Information 28
7.6 Autostart 28
7.7 Custom Mapping 28

7.7.1 Create mapping with the mapping dialog 29
7.7.2 Create a mapping file manually 30

7.8 Variable Forcing 30

8 DCU Program and Mapping batch upload 32
8.1 POST request for uploading files 32

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

iii

Contents

8.2 Using the Perl script 33

9 Standard JSON Module Information 34
9.1 Example JSON response 34
9.2 JSON Response object structure 35
9.3 JSON Response Description 36

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

iv

1 About This Manual 1.1 General Information

1 About This Manual

1.1 General Information

Please read the explanations and configuration instructions in this manual
carefully before starting up the LioN-P modules. Keep this manual where it
is accessible to all users.

The texts, illustrations, diagrams, and examples serve to illustrate the
functionality of the LioN-P µDCU modules.

Please contact us if you have any detailed questions on installing and starting
up the devices.

Belden Deutschland GmbH
– Lumberg Automation™ –
Im Gewerbepark 2
D-58579 Schalksmühle
Germany
support-automation@belden.com
www.lumberg-automation.com

Belden Deutschland GmbH – Lumberg Automation™ – reserves the right to
make technical changes or changes to this manual at any time without notice.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

5

mailto:support-automation@belden.com
http://www.lumberg-automation.com

1.2 Version information 1 About This Manual

1.2 Version information

Index Created Changed

Version number Version 1.0 Version 1.1

Date October 2017

Name/department

Index Changed Changed

Version number Version 1.2

Date January 2020

Name/department JGA/R&D

Table 1: Overview of manual revisions

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

6

2 Introduction

2 Introduction

The LioN-P µDCU is a multiprotocol fieldbus slave module based
on the 0980  ESL  393-121 / 0980  ESL  390-121 module. It provides all
the functionality of the base module, but has an additional integrated
programmable logic unit. This unit can execute user programs created with a
small external tool, called LDMicro. These programs are created in a ladder
logic manner and are called “DCU programs”.

This allows the user to add additional control logic which is stored directly in
the slave module itself and is independent from fieldbus or plc. This ranges
from simple Boolean operations of input and outputs to fully autonomous
(without any plc) programs.

To a plc the module appears as a normal slave module with 8 bit output data
(consuming) and 16 bit input data (producing) of cyclic data.

I/Os used by the DCU program are no more controllable by the plc directly, but
can be used to communicate with the plc, because the corresponding cyclic
bits can be read and written by the DCU program.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

7

3 Explanation of terms

3 Explanation of terms

DCU Distributed Control Unit. A programmable logic for fieldbus modules

DCU program A user written program which can be executed by a DCU (module).

LDMicro A windows software to create DCU programs in a ladder logic manner.

Port Physical plug on a i/o module (M12 / M8, 5 pole) e.g. named with X1, X6. The
modules here have 8 ports.

Channel A pin on a port. Defined by a port and a channel letter. E.g. X1A, X4B. Each port
can have up to two channels. The channels are found on pin 4 (A) and pin 2 (B) of
each port.

Consuming
Data

Cyclic data which is transferred by a fieldbus from a PLC to the i/o module. E.g. for
controlling an output.

Producing Data Cyclic data which is transferred by a fieldbus from an i/o module to the PLC. E.g. for
reading an input.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

8

4 Cyclic Data and Parameters 4.1 Consuming Data

4 Cyclic Data and Parameters

Fixed for 0980  ESL  393-121-DCU1 and default values for
0980  ESL  390-121-DCU1.

4.1 Consuming Data

Output Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte n 4B 4A 3B 3A 2B 2A 1B 1A

Byte n + 1 8B 8A 7B 7A 6B 6A 5B 5A

The following applies here:

D 1A ... 8A: Output of channel A (contact pin 4) of the M12 socket
connections 1 to 8.

D 1B ... 8B: Output of channel B (contact pin 2) of the M12 socket
connections 1 to 8.

4.2 Producing Data

Input Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte n 4B 4A 3B 3A 2B 2A 1B 1A

Byte n + 1 8B 8A 7B 7A 6B 6A 5B 5A

D 1A ... 8A: Actual status of channel A (contact pin 4) of the M12 socket
connections 1 to 8.

D 1B ... 8B: Actual status of channel B (contact pin 2) of the M12 socket
connections 1 to 8.

Attention: Depending on the selected fieldbus, the module can
provide additional cyclic data bytes (e.g. diagnostic information).
Please refer to the manual of the base module for information about
fieldbus specific details.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

9

4.3 Data Exchange 4 Cyclic Data and Parameters

4.3 Data Exchange

Only available in 0980 ESL 390-121-DCU1 (16 DIO Universal DCU)

D The module provides additional cyclic data purely for data exchange
between a PLC and the DCU program. The DCU program can, for
example, take commands and data from the PLC and respond with
execution results.

D The exchange data space contains 16 bit plus 8 words (as 16 bit signed
integer) in each direction.

D The data exchange bits can be written with the YEn bit variable in LDMicro.
D The data exchange bits can be read with the XEn bit variable in LDMicro.
D The symbols for the integer variables EIn and EOn allows the reading and

writing of exchange data words.

4.3.1 PROFINET

Figure 1: DCU exchange area in TIA portal

In PROFINET the exchange area consists of two additional slots (2 and 3).
Slot 2 contains the 16 bit exchange data and slot 3 the 16 byte exchange
words.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

10

4 Cyclic Data and Parameters 4.3 Data Exchange

4.3.2 EtherNet/IP
The exchange data is provided within the EtherNet/IP cyclic data. The format
of this data is subject to change with the currently selected assembly (16DI/
DO, 8DI/8DI, 16DI etc.).

The following cyclic data applies to the default 16DI/16DO assembly with
DCU. For further information please refer to the LioN-P EtherNet/IP manual.

Byte Function

0 Input Data

1 Input Data

2 General Diagnosis

3 Sensor Diagnosis

4 Reserved

5 Actuator Diagnosis 1

6 Actuator Diagnosis 2

7 DCU Bit exchange Byte 1

8 DCU Bit exchange Byte 2

9 DCU Integer exchange 1 MSB

10 DCU Integer exchange 1 LSB

11 DCU Integer exchange 2 MSB

12 DCU Integer exchange 2 LSB

: :

24 DCU Integer exchange 8 MSB

25 DCU Integer exchange 8 LSB

Table 2: Cyclic producing data

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

11

4.3 Data Exchange 4 Cyclic Data and Parameters

Byte Function

0 Output Data

1 Output Data

2 DCU Bit exchange Byte 1

3 DCU Bit exchange Byte 2

4 DCU Integer exchange 1 MSB

5 DCU Integer exchange 1 LSB

6 DCU Integer exchange 2 MSB

7 DCU Integer exchange 2 LSB

: :

20 DCU Integer exchange 8 MSB

21 DCU Integer exchange 8 LSB

Table 3: Cyclic consuming data

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

12

4 Cyclic Data and Parameters 4.3 Data Exchange

4.3.3 EtherCAT

Figure 2: DCU exchange area slots in TwinCAT3

Figure 3: DCU exchange variables in TwinCAT3

In EtherCAT the two exchange areas are organized as additional slots. The
8 signed integer values are directly showed as variables from type INT with
size 2.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

13

4.4 Module Parameters 4 Cyclic Data and Parameters

4.4 Module Parameters

The LioN-P µDCU has one additional plc parameter which controls the DCU
startup behaviour.

4.4.1 DCU startup parameter
Disabled The DCU starts in DISABLED state.

Lock The DCU is disabled and cannot be started by
web interface.

Run The DCU starts in RUN state and executed the
DCU program, IF there is a valid program loaded.

Figure 4: DCU Startup Parameter in TIA Portal

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

14

5 Technical Data 5.1 DCU / Forcemode LED
description

5 Technical Data

5.1 DCU / Forcemode LED description

The DCU/FM LED on the module indicates the DCU and force mode status.

LED Color Meaning

Off DCU Disabled / No Forcemode active

Blue Flashing DCU is running

Blue On DCU is stopped

Red On DCU error

Blue/Red Flashing Force Mode ON

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

15

5.2 Port types 5 Technical Data

5.2 Port types

5.2.1 0980 ESL 393-121-DCU1 (LioN-P 8DI8DO with
DCU)
The µDCU has 8 digital inputs and 8 digital outputs organized in 8 ports with
2 channels each. For more details please refer to the 0980 ESL 393-121
datasheet and manual.

X1 ... X4

Figure 5: Digital Input

PIN 1: +24 Vdc Sensor Supply (200 mA max.)
PIN 2: Input Channel B
PIN 3: GND
PIN 4: Input Channel A
PIN 5: FE / Earth

X5 ... X8

Figure 6: Digital Output / 2 A max.

PIN 1: n. c.
PIN 2: Output Channel B
PIN 3: GND
PIN 4: Output Channel A
PIN 5: FE / Earth

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

16

5 Technical Data 5.3 Electrical Specifications

5.2.2 0980 ESL 390-121-DCU1 (LioN-P 16DIO with DCU)
This module has 16 universal digital channels, organized in 8 ports with 2
channels each. Each channel can be used as a digital input or digital output.

X1 ... X8

Figure 7: Digital Output / Input. 2A
max per channel

PIN 1: +24 Vdc Sensor Supply (200 mA max.)
PIN 2: Channel B In/Out
PIN 3: GND
PIN 4: Channel A In/Out
PIN 5: FE / Earth

5.3 Electrical Specifications

Please refer to 0980 ESL 393-121-DCU1 or 0980 ESL 930-121-DCU1
datasheet.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

17

6.1 µDCU / LDMicro Limitations 6 DCU Programming Details

6 DCU Programming Details

6.1 µDCU / LDMicro Limitations

Max. Rungs 99

Max. Bits 99

Max. Integers 99

Max. Lines (compiled program) 4096

Average µDCU Cycle Time 10 ms

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

18

6 DCU Programming Details 6.2 LDMicro

6.2 LDMicro

Open source ladder logic programming tool:

LDMicro download: http://cq.cx/ladder.pl#dl

Figure 8: LDMicro user interface

6.2.1 LDMicro Introduction
With LDMicro the user can create programs in a Ladder Diagram style
according to EN 61131 - 3. Here all elements of the program are arranged
on horizontal lines (Rungs). Rungs are always executed from left to right
without a guaranteed Rung order. This concept is derived from hardwired
relay circuits.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

19

http://cq.cx/ladder.pl#dl

6.2 LDMicro 6 DCU Programming Details

LDMicro offers a large number of instructions such as:

D Bit operations such as contacts, coils, set/reset
D Edge Detection
D Timers and turn on/off delays
D Up/Down/Circular counters
D 16 bit signed arithmetic operations

DCU programs created with LDMicro are able to:

D Control all inputs and outputs of the module
D React to diagnostic events (short-circuit, undervoltage etc.)
D Communicate with a connected PLC
D Share information on the network

6.2.2 Filetypes
Program files for LDMicro are named with .ld. Those files can be loaded,
edited and saved via LDMicro applicaton.

To compile a program for the DCU, first select the correct target type under
Settings > Microcontroller > Interpretable Bytecode.

It is also possible to set the cycle time (Settings > MCU Parameters. A cycle
time of 10 ms or above is recommended.

Then choose from menu Compile > Compile as…, and select a location and
name where the compiled program should be stored. The program will then
be compiled. The result is an .int file.

This file can now be uploaded into the DCU.

6.2.3 Datatypes
LDMicro knows the following datatypes:

Bit 0 or 1

Int 16 bit signed integer (−32768 to +32767)

T Timer

C Counter

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

20

6 DCU Programming Details 6.2 LDMicro

6.2.4 Naming conventions

6.2.4.1 LDMicro conventions

There are 3 types of bits with a mandatory naming convention:

Type Convention Example

Input Bit Must start with “X” X1A, X5P

Output Bit Must start with “Y” Y2B, Y3P

Internal Relay Must start with “R” R1, RRun, RStart

6.2.4.2 LioN-P µDCU conventions

Type Convention Example

Physical IO Input Data X followed by port number and
channel

X1A, X5B

Physical IO Output Data Y followed by port number and
channel

Y2B, Y7A

Cyclic data to PLC Y followed by “P” and bit number YP5, YP15

Cyclic data from PLC X followed by “P” and bit number XP0, XP6

Special bits “X” or “Y” followed by _(underline)
and a name

X_DIA, Y_STOP

Integer values for IOs IN or OUT followed by byte no. IN1, IN2, OUT1, OUT2

Integer values for special
information

_(underline) followed by a name _SCS, _CE1

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

21

6.2 LDMicro 6 DCU Programming Details

6.2.5 Available Data
This data is available directly in LDMicro programs. Just name a bit or integer
variable in LDMicro according to the following list.

Symbol Direction Type Description

Basic Input/Output Data

Xn[A|B] Input Bit Read digital input state from port n (1…8). Channel A or B

Yn[A|B] Output Bit Write digital output state to port n (1…8). Channel A or B

OUT[0|1] Output Int Write 8 output states from INT. (0=X1…X4, 1= X5…X8)

IN[0|1] Input Int Read 8 input states as INT. (0=X1…X4, 1= X5…X8)

Data exchange (with PLC)

XPn Input Bit Read consuming bit from PLC. n = 0…15

YPn Output Bit Write producing bit to PLC. n = 0…15

XCn[A|B] Input Bit Read consuming data from PLC for port n (1…8). Channel A or B

YPn[A|B] Input Bit Write producing data to PLC for port n (1…8). Channel A or B

XEn* Input Bit Read data exchange bit n (0…15)

YEn* Output Bit Write data exchange bit n (0…15)

EIn* Input Int Data exchange value from PLC..n=0…7

EOn* Out Int Data exchange value to PLC. n=0…7

Diagnostic Information

X_DIA Input Bit Diagnosis Master Bit

X_SCS Input Bit Sensor Diagnosis Bit

X_SCA Input Bit Actuator Diagnosis Bit

X_LVS Input Bit Sensor Supply Voltage fault

X_LVA Input Bit Actuator Supply Voltage fault

X_COMM Input Bit Cyclic connection to PLC established

_SCS Input Int Sensor short circuit information per Port

_CE1 Input Int Channel Error LSB

_CE2 Input Int Channel Error MSB

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

22

6 DCU Programming Details 6.2 LDMicro

DCU Control

Y_STOP Output Bit Causes the DCU to STOP

Y_DIS Output Bit Causes the DCU to DISABLE itself

Special

_Pn Output Int Data to publish. n = 0...31

_MSG Output Int Show Message with corresponding number on web gui

X_Bn Input Bit Virtual Button on web gui pressed. n = button number 1...10

X_FIRST Input Bit Is set only on first program cycle after power-up or reset.

*Only available in 0980 ESL 390-121-DCU1 (16 DIO Universal)

6.2.6 Physical inputs and outputs
The symbol XnA/XnB allows the DCU program to read directly the
corresponding physical input. A contact named with this symbol would be
interpreted as closed if the corresponding input pin is shorted with +24 VDC
(e.g. Pin 1).

The symbol YnA/YnB can be used to control directly a physical digital output.
A coil which is named with this symbol would activate the corresponding
output pin which is set on +24 VDC.

I/Os which are used in a DCU program are disconnected from the
corresponding cyclic data to and from the plc. However, this cyclic data can
still be read and manipulated by the DCU program, in order to communicate
or exchange information with the plc.

I/Os which are NOT used can still be directly controlled by a plc.

6.2.7 Direct access to cyclic bits
The module provides 16 bit of cyclic input data to the plc (producing data),
which is represented in the DCU program by the symbol YPn, where n is
the bit number of the cyclic bit ranging from 0 to 15. A coil which is named
with this symbol would control the corresponding cyclic bit in den module’s
producing data.

Only cyclic bits which are disconnected from physical I/Os (because they are
used in a DCU program) can be manipulated in this way.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

23

6.2 LDMicro 6 DCU Programming Details

Likewise, the 8 bit of cyclic output data from the plc (consuming data) can be
read by a DCU program with the XPn symbol, where n is the cyclic bit number
ranging from 0 to 7.

This allows the DCU program to react on events triggered by the plc.

6.2.8 Reading and manipulating consuming and
producing data by channel
The XCnA / XCnB symbols read the consuming cyclic bit received from the
PLC which controls the specified output channel. Even if the channel is
controlled by the DCU and therefore not by the PLC directly, the DCU program
is able to react on the state of this bit.

The YPnA / YPnB symbols manipulate the producing data for the specified
channel which is sent to the PLC via the cyclic data. With this a DCU program
can simulate an input state to the PLC independently from the real input state
of the channel (input simulation).

Physical

Port/
Channel

Port

1/A

Port

1/B

Port

2/A

Port

2/B

Port

3/A

Port

3/B

Port

4/A

Port

4/B

Read
consuming
bit

XC1A XC1B XC2A XC2B XC3A XC3B XC4A XC4B

Manipulate
producing
bit

YP1A YP1B YP2A YP2B YP3A YP3B YP4A YP4B

Physical

Port/
Channel

Port

5/A

Port

5/B

Port

6/A

Port

6/B

Port

7/A

Port

7/B

Port

8/A

Port

8/B

Read
consuming
bit

XC5A XC5B XC6A XC6B XC7A XC7B XC8A XC8B

Manipulate
producing
bit

YP5A YP5B YP6A YP6B YP7A YP7B YP8A YP8B

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

24

6 DCU Programming Details 6.2 LDMicro

6.2.9 Data Exchange
Only available in 0980 ESL 390-121-DCU1 (16 DIO Universal DCU)

D The module provides additional cyclic data purely for data exchange
between a PLC and the DCU program. The DCU program can, for
example, take commands and data from the PLC and respond with
execution results.

D The exchange data space contains 16 bit plus 8 words (as 16 bit signed
integer) in each direction.

D The data exchange bits can be written with the YEn bit variable in LDMicro.
D The data exchange bits can be read with the XEn bit variable in LDMicro.
D The symbols for the integer variables EIn and EOn allows the reading and

writing of exchange data words.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

25

7.1 Web Interface element overview 7 DCU Web Interface

7 DCU Web Interface

Figure 9: DCU web interface

The DCU web interface allows the user to upload programs to the DCU and
to control the DCU state.

7.1 Web Interface element overview

1. Shows the current DCU state and provides buttons to control the DCU.
2. Upload a DCU program or mapping file.
3. If the autostart box is checked, the DCU will run automatically after power

up, if a valid program is present.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

26

7 DCU Web Interface 7.2 Username and Password

4. Shows basic program information and a list of all module functions
currently used by the DCU program by its variables. It also displays the
current value of each variable.

5. Change the number format of the value column for INT variables
6. Opens the mapping dialog for creating a custom variable mapping.
7. Activate/deactivate variable forcing.

7.2 Username and Password

To change the DCU state or upload programs, "WRITE" or "ADMIN" privileges
are required. The default password for user "admin" is "private".

7.3 DCU States

There are the following DCU states:

State on web
site

Description

NO
PROGRAM

There is no program loaded or the uploaded file is not a valid program.

LOCKED The DCU is locked by the master (PLC) configuration.

DISABLED The DCU is disabled. No program is running and the DCU has no control over the
inputs and outputs.
The module acts as a normal digital I/O module.

STOP The DCU controls the inputs and outputs that are used in the loaded program, but the
program is stopped.
All other inputs and outputs can still controlled by the master.

RUN The DCU controls the inputs and outputs that are used in the loaded program, and the
program is executed.
All other inputs and outputs can still be controlled by the master.

7.4 Uploading a program into the DCU

Programs which are created and compiled with LDMicro can be directly
uploaded into the plc. Choose the program file (.int) and press upload.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

27

7.5 Program Information 7 DCU Web Interface

Program upload is NOT allowed when the DCU is in RUN mode. WRITE or
ADMIN user rights are needed to upload a DCU program.

It is also possible to upload a variable mapping file (.map).

7.5 Program Information

The box on the right shows some information about the currently loaded
program. The variable table shows all variables in the program which are
mapped to a module function. Here are also located the buttons for changing
the number format, mapping dialog and variable forcing.

7.6 Autostart

If the autostart checkbox is checked, the DCU will automatically start in RUN
mode if the module is powered on and if there is a valid program loaded.

7.7 Custom Mapping

Typically, the mapping between a variable and the corresponding module
function is implicitly supposed by the variable name, according to the table in
chapter 5.5. For example, a variable named Y5B is automatically connected
to the module function “Set physical output Port 5 Channel B”. If this approach
is used, no further mapping is needed.

For a better readability of the DCU program, it can be useful to name variables
according to their function in the application. For example, if an output should
control a green LED, the variable can be Y_LEDGreen.

Such a variable name is not known by the module and therefore not
connected to any function and this variable will not be shown in the variable
list, but the mapping between this variable and a physical output can be made
manually via the variable mapping

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

28

7 DCU Web Interface 7.7 Custom Mapping

7.7.1 Create mapping with the mapping dialog

Figure 10: Variable mapping dialog

The mapping dialog shows a list of all variables in the current program (which
are not mapped automatically by their names). [1]

Each of these variables can be connected to a device function by selecting
the variable. After that, the function dropdown list fills with possible functions
for this variable type.

After selecting a function, it can be necessary to specify it. For example
choose a number or a port and channel. [2]

A click on Create Mapping will connect the variable with this function. This
connection is also visible in the variable list.

The button Delete Mapping breaks an existing mapping.

If all needed variables are mapped, click on Apply Changes to send the
changes to the module.

The variable list on the DCU page now shows also the newly mapped
variables with the original function name in brackets.

For backup, reuse or external editing, the current mapping can be
downloaded as a file. [3]

The button Clear all mappings deletes all existing mappings in the device.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

29

7.8 Variable Forcing 7 DCU Web Interface

7.7.2 Create a mapping file manually
A variable mapping can also be created by simply uploading a mapping file.
The file is structured as follows:

[CustomName];[Symbol]\r\n

Example XStart;X1A

YLED;Y5B

The file should be terminated by the extension ".map".

7.8 Variable Forcing

Figure 11: Variable list with active forcing

All variables of a DCU program which are mapped to a module function can
be forced. That means that the value can be manually modified from the web
interface directly.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

30

7 DCU Web Interface 7.8 Variable Forcing

Input variables (variables which are filled with data from the module) can
forced to a specific value which is then read by the DCU program. So input
data to a DCU program can be manipulated e.g. for testing reasons.

Output variables (variables which are written by a DCU program to modify the
module state) can be forced to a specific value which is directly passed to the
module function, the variable is mapped with. So this function can be directly
manipulated. Output variables are only processed if the DCU is in RUN state.

To start variable forcing, the user clicks on the button marked “F” in the
program information section. The buttons turn to “X”. A click on the button
again will end the variable forcing.

All variables in the list will get an additional “F” button in the value column. A
click on this button opens a small dialog which allows the user to enter a force
value for this variable. Bit variables only offers a “0” and “1” button, since bit
variables only can be set to 0 or 1.

For Int Variables a number can be entered.

The button marked with “X” will terminate the forcing for this variable
immediately.

A forced variable in the list is marked with a yellow background.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

31

8.1 POST request for uploading files 8 DCU Program and Mapping batch
upload

8 DCU Program and Mapping batch
upload

The DCU program and mapping files can also be uploaded directly via an
http POST request. An example Perl script is provided which can be directly
used for batch upload.

8.1 POST request for uploading files

URI /upload?cmd=store&fullpage=false

Method POST

MIME Type multipart/form-data

path dcu

submit uploadForm fields

file [file to upload] (as application/octet-stream)

Filename dc.int for program file
dc.map for mapping file

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

32

8 DCU Program and Mapping batch
upload

8.2 Using the Perl script

8.2 Using the Perl script

A Perl script (transfer.pl) for batch uploading files to the DCU is provided with
a sample batch file which shows how to use it.

This line uploads a dcu program file (dc.int) to the module with the IP-Address
192.168.1.20:

perl -w .\transfer.pl -s dc.int -t dcu 192.168.1.20 -a IO-Device:admin:private

The same for the mapping file:

perl -w .\transfer.pl -s dc.map -t dcu 192.168.1.20 -a IO-Device:admin:private

Eventually, username and / or password must be adjusted to match the real
module configuration. Any user with at least “WRITE” privileges can be used.

IO-Device is the realm name and should be left unchanged.

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

33

9.1 Example JSON response 9 Standard JSON Module Information

9 Standard JSON Module Information

The LioN-P modules offer a machine readable interface for the most important
data. This data can be obtained via a http GET request. The answer is a
JSON object.

In case of a DCU this data also contains the DCU public and exchange
variables.

Request Method http GET

Request URI /info.json

Response Format JSON

9.1 Example JSON response

 {"name": "0980 ESL 390-121-DCU1","fw-version": "V2.1.0.2-2.0",
 "hw-version":"V1.0","mac": "3C:B9:A6:00:17:00","bus": 0,"failsafe": 0,
 "inputs":[3,0],"outputs": [0,0],"consuming": [0,0],"producing":
 [0,0],"diag":[0,0,0,0],"dcu": {"state": 1,"autostart": 0,"public":
 [0,0],
 "consuming_bits":[0,0],"consuming_ints": [0,0,0,0,0,0,0,0],
 "producing_bits":[0,0],"producing_ints":[0,0,0,0,0,0,0,0]}}

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

34

9 Standard JSON Module Information 9.2 JSON Response object structure

9.2 JSON Response object structure

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

35

9.3 JSON Response Description 9 Standard JSON Module Information

9.3 JSON Response Description

Fieldname Datatype Description

name String Name of the module

fw-version String Firmware Version

hw-version String Hardware Version

mac String MAC Address of the module

bus Number 0 = Not Connected to fieldbus
1 = Connected to fieldbus

failsafe Number 0 = Normal output operation
1 = Outputs in failsafe state

inputs Number[2] LSB = Physical input state Port X1-X4
MSB= Physical input state Port X5-X8

outputs Number[2] LSB = Physical output state Port X1-X4
MSB= Physical output state Port X5-X8

consuming Number[2] Consuming data from PLC

producing Number[2] Producing data to PLC

diag Number[4] Contains diagnostic information of the module
Byte 0:

D Bit 0 = System/Sensor voltage supply fault (US)
D Bit 1 = Actuator voltage supply fault (UL)
D Bit 2 = Sensor short circuit detected
D Bit 3 = Actuator overload
D Bit 6 = Forcemode active
D Bit 7 = Internal module fault (IO data invalid!)

Byte 1 = Sensor short circuit port 1-8
Byte 2 = Actuator short circuit port 1-4 (Channel A, B)
Byte 3 = Actuator short circuit port 5-8 (Channel A, B)

dcu Object (only available on DCU modules)

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

36

9 Standard JSON Module Information 9.3 JSON Response Description

Fieldname Datatype Description

dcu/state Number Current state of the DCU:

D 0 = LOCKED
D 1 = NO PROGRAM
D 2 = DISABLED
D 3 = STOP
D 4 = RUN
D 5 = ERROR

dcu/autostart Number Is 1 if the local autostart is enabled

dcu/public Number[32] Contains all values of the DCU public variables
_P0 - _P31

dcu/
consuming_bits

Number[2] 16 dcu exchange bits set by PLC

dcu/producing_bit Number[2] 16 dcu exchange bits set by DCU program

dcu/
consuming_ints

Number[8] 16 dcu exchange words (16 bit signed integer) set by PLC

dcu/producing_ints Number[8] 16 dcu exchange words set by DCU program

Manual LioN-P µDCU Distributed Control Unit
Version 1.2 01/2020

37

	Contents
	1 About This Manual
	1.1 General Information
	1.2 Version information

	2 Introduction
	3 Explanation of terms
	4 Cyclic Data and Parameters
	4.1 Consuming Data
	4.2 Producing Data
	4.3 Data Exchange
	4.3.1 PROFINET
	4.3.2 EtherNet/IP
	4.3.3 EtherCAT

	4.4 Module Parameters
	4.4.1 DCU startup parameter

	5 Technical Data
	5.1 DCU / Forcemode LED description
	5.2 Port types
	5.2.1 0980 ESL 393-121-DCU1 (LioN-P 8DI8DO with DCU)
	5.2.2 0980 ESL 390-121-DCU1 (LioN-P 16DIO with DCU)

	5.3 Electrical Specifications

	6 DCU Programming Details
	6.1 µDCU / LDMicro Limitations
	6.2 LDMicro
	6.2.1 LDMicro Introduction
	6.2.2 Filetypes
	6.2.3 Datatypes
	6.2.4 Naming conventions
	6.2.4.1 LDMicro conventions
	6.2.4.2 LioN-P µDCU conventions

	6.2.5 Available Data
	6.2.6 Physical inputs and outputs
	6.2.7 Direct access to cyclic bits
	6.2.8 Reading and manipulating consuming and producing data by channel
	6.2.9 Data Exchange

	7 DCU Web Interface
	7.1 Web Interface element overview
	7.2 Username and Password
	7.3 DCU States
	7.4 Uploading a program into the DCU
	7.5 Program Information
	7.6 Autostart
	7.7 Custom Mapping
	7.7.1 Create mapping with the mapping dialog
	7.7.2 Create a mapping file manually

	7.8 Variable Forcing

	8 DCU Program and Mapping batch upload
	8.1 POST request for uploading files
	8.2 Using the Perl script

	9 Standard JSON Module Information
	9.1 Example JSON response
	9.2 JSON Response object structure
	9.3 JSON Response Description

