

Handbuch

PROFINET

LioN-X Digital-I/O Multiprotokoll:
0980 XSL 3900-121-007D-01F (16 x Input/Output)
0980 XSL 3901-121-007D-01F (16 x Input)
0980 XSL 3903-121-007D-01F (8 x Input, 8 x Output isoliert)
0980 XSL 3923-121-007D-01F (8 x Input, 8 x Output)

Inhalt

1 Zu diesem Handbuch	8
1.1 Allgemeine Informationen	8
1.2 Erläuterung der Symbolik	9
1.2.1 Verwendung von Gefahrenhinweisen	9
1.2.2 Verwendung von Hinweisen	9
1.3 Versionsinformationen	9
2 Sicherheitshinweise	10
2.1 Bestimmungsgemäßer Gebrauch	10
2.2 Qualifiziertes Personal	11
3 Bezeichnungen und Synonyme	12
4 Systembeschreibung	15
4.1 Gerätevarianten	16
4.2 I/O-Port-Übersicht	17
5 Übersicht der Produktmerkmale	21
5.1 PROFINET Produktmerkmale	21
5.2 Integrierter Webserver	24
5.3 Sicherheitsmerkmale	25
5.4 Sonstige Merkmale	26

6 Montage und Verdrahtung	27
6.1 Allgemeine Informationen	27
6.2 Äußere Abmessungen	28
6.2.1 LioN-X Digital-I/O Multiprotokoll-Varianten	28
6.2.2 Hinweise	32
6.3 Port-Belegungen	33
6.3.1 Ethernet-Ports, M12-Buchse, 4-polig, D-kodiert	33
6.3.2 Spannungsversorgung mit M12-Power L-kodiert	34
6.3.3 I/O-Ports als M12-Buchse	35
6.3.3.1 I/O-Ports	36
7 Inbetriebnahme	37
7.1 GSDML-Datei	37
7.2 MAC-Adressen	37
7.3 Auslieferungszustand	38
7.4 Drehkodierschalter einstellen	39
7.4.1 PROFINET	42
7.4.2 Werkseinstellungen wiederherstellen	42
7.5 SNMPv1	42
8 Konfiguration und Betrieb mit dem S	SIEMENS
TIA Portal [®]	44
8.1 Vergabe eines Gerätenamens und der IP-Adresse	46
8.2 Konfiguration der I/O-Ports	48
8.2.1 I/O-Konfiguration löschen	49
8.2.2 I/O-Konfiguration ändern	50
8.3 Parametrierung des Status-/Control-Moduls	51
8.3.1 Allgemeine Einstellungen ("General Parameters 8.3.2 DI/DO Mapping	") 53 55

8.3.3 DO Surveillance Timeout (ms)	58
8.3.4 DO Failsafe Behavior	58
8.3.5 DO Restart Mode after Failure	59
8.3.6 DO Current Limit	60
8.3.7 DI Filter Time	61
8.3.8 DI Input Logic	62
8.4 Media Redundancy Protocol (MRP)	63
8.5 Identification & Maintenance (I&M)	65
8.5.1 Unterstützte I&M-Funktionen	65
8.5.1.1 I&M-Daten des PN-IO-Gerätes	65
8.5.2 Lesen und Schreiben von I&M-Daten	68
8.5.2.1 I&M Read Record	69
8.5.2.2 I&M Write Record	71
8.6 Fast Start Up (FSU)/Prioritized Startup	72
9 Zuweisung der Prozessdaten	74
9.1 0980 XSL 3900-121-007D-01F	75
9.1.1 16 DI/DO	75
9.1.1.1 Mapping Mode 1	75
9.1.1.2 Mapping Mode 2	75
9.1.1.3 Mapping Mode 3	75
9.1.1.4 Mapping Mode 4	75
9.1.1.5 Mapping Mode 5	76
9.1.2 16 DI	77
9.1.2.1 Mapping Mode 1	77
9.1.2.2 Mapping Mode 2	77
9.1.2.3 Mapping Mode 3	77
9.1.2.4 Mapping Mode 4	77
9.1.2.5 Mapping Mode 5	77
9.1.3 16 DO	78
9.1.3.1 Mapping Mode 1	78
9.1.3.2 Mapping Mode 2	78
9.1.3.3 Mapping Mode 3	78
9.1.3.4 Mapping Mode 4	78

9.1.3.5 Mapping Mode 5	78
9.1.4 8 DI	79
9.1.4.1 Mapping Mode 5	79
9.1.5 8 DI/8 DO, Opt. 1	79
9.1.5.1 Mapping Mode 5	79
9.1.6 8 DI/8 DO, Opt. 2	79
9.1.6.1 Mapping Mode 5	79
9.1.7 8 DI/8 DO, Opt. 3	80
9.1.7.1 Mapping Mode 5	80
9.1.8 8 DI	80
9.1.8.1 Mapping Mode 5	80
9.2 0980 XSL 3901-121-007D-01F	81
9.2.1 16 DI	81
9.2.1.1 Mapping Mode 1	81
9.2.1.2 Mapping Mode 2	81
9.2.1.3 Mapping Mode 3	81
9.2.1.4 Mapping Mode 4	81
9.2.1.5 Mapping Mode 5	82
9.2.2 8 DI	83
9.2.2.1 Mapping Mode 5	83
9.3 0980 XSL 3903-121-007D-01F	83
9.3.1 8 DI/8 DO	83
9.3.1.1 Mapping Mode 5	83
9.4 0980 XSL 3923-121-007D-01F	83
9.4.1 8 DI/8 DO	83
9.4.1.1 Mapping Mode 5	83
9.5 DO-Ströme X1 X4	84
9.6 DO-Ströme X5 X8	84
9.7 U _S /U _L -Spannungen X03/X04	85
9.8 PROFINET Kanal-Diagnose-Mapping	86
10 Diagnose	87
10.1 Detaillierte Diagnose-Beschreibung	87
10.1.1 Fehler der System-/Sensorversorgung U _S	87
13.1.1 I chick del Cystem / Consol versoligang og	51

10.1.2 Fehler der Aktor-Versorgung U _L	88
10.1.3 Überlast/Kurzschluss der I/O-Por	
Sensorversorgungsausgänge	89
10.1.4 Überlast/Kurzschluss der I/O-Port Ch. A als Aktor-Ausgäng	-
10.1.5 Überlast/Kurzschluss der I/O-Port Ch. B als Aktor-Ausgäng	-
10.1.6 Generischer Parameter-Fehler	92
10.1.7 I/O-Mapping Parameter-Fehler	92
10.1.8 Force-Mode Diagnose	93
10.1.9 Interner Modul-Fehler	93
10.2 Tabelle mit PROFINET Diagnose-Codes	94
11 IloT-Funktionalität	95
11.1 MQTT	96
11.1.1 MQTT-Konfiguration	96
11.1.2 MQTT-Topics	99
11.1.2.1 Base-Topic	99
11.1.2.2 Publish-Topic	102
11.1.2.3 Command-Topic (MQTT Subscribe)	110
11.1.3 MQTT-Konfiguration - Schnellstart-Anleitung	114
11.1.3.1 MQTT-Konfiguration über JSON	114
11.2 OPC UA	116
11.2.1 OPC UA-Konfiguration	116
11.2.1.1 Gateway-Objekte	119
11.2.1.2 Ports-Objekte	122
11.2.1.3 Channel objects	123
11.2.2 OPC UA Address-Space	125
11.2.3 OPC UA-Konfiguration - Schnellstart-Anleitung	126
11.2.3.1 OPC UA-Konfiguration über JSON	126
11.3 REST API	128
11.3.1 Standard Geräte-Information	128
11.3.2 Struktur	129
11.3.3 Konfiguration und Forcing	133
11.4 CoAP-Server	135
11.4.1 CoAP-Konfiguration	135

11.4.2 REST API-Zugriff via CoAP	136
11.4.3 CoAP-Konfiguration - Schnellstart-Anleitung	138
11.4.3.1 CoAP-Konfiguration über JSON	138
11.5 Syslog	140
11.5.1 Syslog-Konfiguration	140
11.5.2 Syslog-Konfiguration - Schnellstart-Anleitung	143
11.5.2.1 Syslog-Konfiguration über JSON	143
11.6 Network Time Protocol (NTP)	145
11.6.1 NTP-Konfiguration	145
11.6.2 NTP-Konfiguration - Schnellstart-Anleitung	147
11.6.2.1 NTP-Konfiguration über JSON	147
12 Integrierter Webserver	149
12.1 LioN-X 0980 XSLVarianten	150
12.1.1 Status-Seite	150
12.1.2 Port-Seite	151
12.1.3 Systemseite	152
12.1.4 Benutzerseite	154
13 Technische Daten	155
13.1 Allgemeines	156
13.2 PROFINET-Protokoll	157
13.3 Spannungsversorgung der Modulelektronik/Sensorik	158
13.4 Spannungsversorgung der Aktorik	159
13.5 I/O-Ports	159
13.5.1 Digitale Eingänge	160
13.5.2 Digitale Ausgänge	160
13.6 LEDs	162
13.7 Datenübertragungszeiten	164
14 Zubehör	167

1 Zu diesem Handbuch

1.1 Allgemeine Informationen

Lesen Sie die Montage- und Betriebsanleitung in diesem Handbuch sorgfältig, bevor Sie die Geräte in Betrieb nehmen. Bewahren Sie das Handbuch an einem Ort auf, der für alle Benutzer zugänglich ist.

Die in diesem Handbuch verwendeten Texte, Abbildungen, Diagramme und Beispiele dienen ausschließlich der Erläuterung zur Bedienung und Anwendung der Geräte.

Bei weitergehenden Fragen zur Installation und Inbetriebnahme der Geräte sprechen Sie uns bitte an.

Belden Deutschland GmbH

- Lumberg Automation™ –

Im Gewerbepark 2

D-58579 Schalksmühle

Deutschland

lumberg-automation-support.belden.com

www.lumberg-automation.com

catalog.belden.com

Belden Deutschland GmbH – Lumberg Automation™ – behält sich vor, jederzeit technische Änderungen oder Änderungen dieses Handbuches ohne besondere Hinweise vorzunehmen.

1.2 Erläuterung der Symbolik

1.2.1 Verwendung von Gefahrenhinweisen

Gefahrenhinweise sind wie folgt gekennzeichnet:

Gefahr: Bedeutet, dass Tod, schwere Körperverletzung oder erheblicher Sachschaden eintreten wird, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Warnung: Bedeutet, dass Tod, schwere Körperverletzung oder erheblicher Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Vorsicht: Bedeutet, dass eine leichte Körperverletzung oder ein Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

1.2.2 Verwendung von Hinweisen

Hinweise sind wie folgt dargestellt:

Achtung: Ist eine wichtige Information über das Produkt, die Handhabung des Produktes oder den jeweiligen Teil der Dokumentation, auf den besonders aufmerksam gemacht werden soll.

1.3 Versionsinformationen

Version	Erstellt	Änderungen
1.0	03/2023	
1.1	07/2023	Warnhinweis in Kap. Drehkodierschalter einstellen auf Seite 39

Tabelle 1: Übersicht der Handbuch-Revisionen

2 Sicherheitshinweise

2.1 Bestimmungsgemäßer Gebrauch

Die in diesem Handbuch beschriebenen Produkte dienen als dezentrales I/O Device in einem Industrial-Ethernet-Netzwerk.

Wir entwickeln, fertigen, prüfen und dokumentieren unsere Produkte unter Beachtung der Sicherheitsnormen. Bei Beachtung der für Projektierung, Montage und bestimmungsgemäßen Betrieb beschriebenen Handhabungsvorschriften und sicherheitstechnischen Anweisungen gehen von den Produkten im Normalfall keine Gefahren für Personen oder Sachen aus.

Die Module erfüllen die Anforderungen der EMV-Richtlinie (89/336/EWG, 93/68/EWG und 93/44/EWG) und der Niederspannungsrichtlinie (73/23/EWG).

Ausgelegt sind die Geräte für den Einsatz im Industriebereich. Die industrielle Umgebung ist dadurch gekennzeichnet, dass Verbraucher nicht direkt an das öffentliche Niederspannungsnetz angeschlossen sind. Für den Einsatz im Wohnbereich oder in Geschäfts- und Gewerbebereichen sind zusätzliche Maßnahmen erforderlich.

Achtung: Diese Einrichtung kann im Wohnbereich Funkstörungen verursachen. In diesem Fall kann vom Betreiber verlangt werden, angemessene Gegenmaßnahmen durchzuführen.

Die einwandfreie und sichere Funktion des Produkts erfordert einen sachgemäßen Transport, eine sachgemäße Lagerung, Aufstellung und Montage sowie sorgfältige Bedienung.

Beachten Sie bei der Projektierung, Installation, Inbetriebnahme, Wartung und Prüfung der Geräte die für den spezifischen Anwendungsfall gültigen Sicherheits- und Unfallverhütungsvorschriften.

Installieren Sie ausschließlich Leitungen und Zubehör, die den Anforderungen und Vorschriften für Sicherheit, elektromagnetische

Verträglichkeit und ggf. Telekommunikations-Endgeräteeinrichtungen sowie den Spezifikationsangaben entsprechen. Informationen darüber, welche Leitungen und welches Zubehör zur Installation zugelassen sind, erhalten Sie von Lumberg Automation™ oder sind in diesem Handbuch beschrieben.

2.2 Qualifiziertes Personal

Zur Projektierung, Installation, Inbetriebnahme, Wartung und Prüfung der Geräte ist ausschließlich eine anerkannt ausgebildete Elektrofachkraft befugt, die mit den Sicherheitsstandards der Automatisierungstechnik vertraut ist.

Die Anforderungen an das Personal richten sich nach den Anforderungsprofilen, die vom ZVEI, VDMA oder vergleichbaren Organisationen beschrieben sind.

Ausschließlich Elektrofachkräfte, die den Inhalt dieses Handbuches kennen, sind befugt, die beschriebenen Geräte zu installieren und zu warten. Dies sind Personen, die

- ▶ aufgrund ihrer fachlichen Ausbildung, Kenntnis und Erfahrung sowie Kenntnis der einschlägigen Normen die auszuführenden Arbeiten beurteilen und mögliche Gefahren erkennen können oder
- ▶ aufgrund einer mehrjährigen Tätigkeit auf vergleichbarem Gebiet den gleichen Kenntnisstand wie nach einer fachlichen Ausbildung haben.

Eingriffe in die Hard- und Software der Produkte, die den Umfang dieses Handbuchs überschreiten, darf ausschließlich Belden Deutschland GmbH – Lumberg Automation™ – vornehmen.

Warnung: Unqualifizierte Eingriffe in die Hard- oder Software oder die Nichtbeachtung der in diesem Handbuch gegebenen Warnhinweise können schwere Personen- oder Sachschäden zur Folge haben.

Achtung: Belden übernimmt keinerlei Haftung für jegliche Schäden, die durch unqualifiziertes Personal oder unsachgemäßen Gebrauch entstehen. Dadurch erlischt die Garantie automatisch.

3 Bezeichnungen und Synonyme

AOI	Add-On Instruction	
API	Application Programming Interface	
BF	Bus-Fault-LED	
Big Endian	Datenformat mit High-B an erster Stelle (PROFINET)	
BUI	Back-Up Inconsistency (EIP-Diagnose)	
СС	CC-Link IE Field	
Ch. A	Channel A (Pin 4) des I/O-Ports	
Ch. B	Channel B (Pin 2) des I/O-Ports	
CIP	Common Industrial Protocol (Medien-unabhängiges Protokoll)	
CoAP	Constrained Application Protocol	
CSP+	Control & Communication System Profile Plus	
DCP	Discovery and Configuration Protocol	
DevCom	Device Comunicating (EIP-Diagnose)	
DevErr	Device Error (EIP-Diagnose)	
DI	Digital Input	
DIA	Diagnose-LED	
DO	Digital Output	
DIO	Digital Input/Output	
DTO	Device Temperature Overrun (EIP-Diagnose)	
DTU	Devie Temperature Underrun (EIP-Diagnose)	
DUT	Device under test	
EIP	EtherNet/IP	
ERP	Enterprise Resource Planning system	
ETH	ETHERNET	
FE	Funktionserde	
FME	Force Mode Enabled (EIP-Diagnose)	
FSU	Fast Start-Up	

GSDML	General Station Description Markup Language		
High-B	High-Byte		
ICT	Invalid Cycle Time (EIP-Diagnose)		
lloT	Industrial Internet of Things		
ILE	Input process data Length Error (EIP-Diagnose)		
IME	Internal Module Error (EIP-Diagnose)		
I/O	Input / Output		
I/O-Port	X1 X8		
I/O-Port Pin 2	Channel B von X1 X8		
I/O-Port Pin 4 (C/Q)	Channel A von X1 X8		
IVE	IO-Link port Validation Error (EIP-Diagnose)		
I&M	Identification & Maintenance		
JSON	JavaScript Object Notation (Plattform-unabhängiges Datenformat)		
L+	I/O-Port Pin 1, Sensor-Spannungsversorgung		
LioN-X 60	60 mm breite LioN-X-Gerätevariante		
Little Endian	Datenformat mit Low-B an erster Stelle (EtherNet/IP)		
LLDP	Link Layer Discovery Protocol		
Low-B	Low-Byte		
LSB	Least Significant Bit		
LVA	Low Voltage Actuator Supply (EIP-Diagnose)		
LVS	Low Voltage System/Sensor Supply (EIP-Diagnose)		
MIB	Management Information Base		
MP	Multiprotokoll: PROFINET + EtherNet/IP + EtherCAT® + Modbus TCP (+ CC-Link IE Field Basic)		
MQTT	Message Queuing Telemetry Transport (offenes Netzwerk- Protokoll)		
MSB	Most Significant Bit		
M12	Metrisches Gewinde nach DIN 13-1 mit 12 mm Durchmesser		
NTP	Network Time Protocol		
OLE	Output process data Length Error (EIP-Diagnose)		

OPC UA	Open Platform Communications Unified Architecture (Plattform-unabhängige, Service-orientierte Architektur)		
PLC / SPS	Programmable Logic Controller (= Speicherprogrammierbare Steuerung SPS)		
PN	PROFINET		
PWR	Power		
REST	REpresentational State Transfer		
RFC	Request for Comments		
RPI	Requested Packet Interval		
RWr	Word-Dateneingang aus Sicht der Master-Station (CC-Link)		
RWw	Word-Datenausgang aus Sicht der Master-Station (CC-Link)		
RX	Bit-Dateneingang aus Sicht der Master-Station (CC-Link)		
RY	Bit-Datenausgang aus Sicht der Master-Station (CC-Link)		
SCA	Short Circuit Actuator/U _L /U _{AUX} (EIP-Diagnose)		
SCS	Short Circuit Sensor (EIP-Diagnose)		
SLMP	Seamless Message Protocol		
SNMP	Simple Network Management Protocol		
SP	Single-Protokoll (PROFINET, EtherNet/IP, EtherCAT®, Modbus TCP oder CC-Link IE Field Basic)		
SPE	Startup Parameterization Error (EIP-Diagnose)		
U _{AUX}	U _{Auxiliary} , Versorgungsspannung für den Lastkreis (Aktuatorversorgung auf den Class B-Ports)		
UDP	User Datagram Protocol		
UDT	User-Defined Data Types		
UINT8	Byte in der PLC (IB, QB)		
UINT16	Unsigned Integer mit 16 Bits oder Wort in der PLC (IW, QW)		
UL	U _{Load} , Versorgungsspannung für den Lastkreis (Aktuatorversorgung auf Class A)		
UL	Underwriters Laboratories Inc. (Zertifizierungsstelle)		
UTC	Koordinierte Weltzeit (Temps Universel Coordonné)		

Tabelle 2: Bezeichnungen und Synonyme

4 Systembeschreibung

Die LioN-Module (Lumberg AutomationTM Input/Output Network) fungieren als Schnittstelle in einem industriellen Ethernet-System: Eine zentrale Steuerung auf Management-Ebene kann mit der dezentralen Sensorik und Aktorik auf Feldebene kommunizieren. Durch die mit den LioN-Modulen realisierbaren Linien- oder Ring-Topologien ist nicht nur eine zuverlässige Datenkommunikation, sondern auch eine deutliche Reduzierung der Verdrahtung und damit der Kosten für Installation und Wartung möglich. Zudem besteht die Möglichkeit der einfachen und schnellen Erweiterung.

16

4.1 Gerätevarianten

Folgende Digital-I/O-Gerätevarianten sind in der LioN-X-Familie erhältlich:

Artikelnummer	Produktbezeichnung	Beschreibung	I/O-Portfunktionalität	
935705001	0980 XSL 3900-121-007D-01F	LioN-X M12-60 mm, I/O Device Multiprotokoll (PN, EIP, EC, MB, CC) Security	16 x Input/Output universal	
935706002	0980 XSL 3901-121-007D-01F	LioN-X M12-60 mm, I/O Device Multiprotokoll (PN, EIP, EC, MB, CC) Security	16 x Input	
935707001	0980 XSL 3903-121-007D-01F	LioN-X M12-60 mm, I/O Device Multiprotokoll (PN, EIP, EC, MB, CC) Security	8 x Input, 8 x Output Mixmodul, galvanisch getrennt	
935708001	0980 XSL 3923-121-007D-01F	LioN-X M12-60 mm, I/O Device Multiprotokoll (PN, EIP, EC, MB, CC) Security	8 x Input, 8 x Output Mixmodul, keine galvanische Trennung der Ausgänge	

Tabelle 3: Übersicht der LioN-X Digital-I/O Varianten

4.2 I/O-Port-Übersicht

Die folgenden Tabellen zeigen die Hauptunterschiede in den I/O-Ports innerhalb der LioN-X-Familie. Pin 4 und Pin 2 der I/O-Ports können teilweise als Digitaler Eingang oder Digitaler Ausgang konfiguriert werden.

LioN-X 16DIO-Ports

Geräte- variante	Port	Pin 1 U _S	Pin 4 / Ch. A (In/Out)		Pin 2 / Ch. B (In/Out)	
	Info:	_	Type 3	Supply by U _L	Type 3	Supply by U _L
	X8:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
	X7:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
0980 XSL	X6:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
3900	X5:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
	X4:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
	Х3:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
-	X2:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)
	X1:	U _S (4 A)	DI	DO (2 A)	DI	DO (2 A)

Tabelle 4: Port-Konfiguration von 0980 XSL 3900...-Varianten

LioN-X 16DI-Ports

Geräte- variante	Port	Pin 1 U _S	Pin 4 / Ch. A (Input)	Pin 2 / Ch. B (Input)
	Info:	_	Type 3	Туре 3
	X8:	U _S (4 A)	DI	DI
	X7:	U _S (4 A)	DI	DI
0980 XSL 3901	X6:	U _S (4 A)	DI	DI
	X5:	U _S (4 A)	DI	DI
	X4:	U _S (4 A)	DI	DI
	X3:	U _S (4 A)	DI	DI
	X2:	U _S (4 A)	DI	DI
	X1:	U _S (4 A)	DI	DI

Tabelle 5: Port-Konfiguration von 0980 XSL 3901...-Varianten

LioN-X 8DI8DO-Ports mit galvanischer Trennung der Ausgänge

Geräte- variante	Port	Pin 1 U _S	Pin 4 / Ch. A (In/Out)		Pin 2 / Ch. B (In/Out)	
	Info:	-	Type 3	Supply by U _L	Туре 3	Supply by U _L
	X8:	-	-	DO (2 A)	-	DO (2 A)
	X7:	_	_	DO (2 A)	_	DO (2 A)
0980 XSL	X6:	_	_	DO (2 A)	_	DO (2 A)
3903	X5:	_	-	DO (2 A)	_	DO (2 A)
	X4:	U _S (4 A)	DI	_	DI	_
	Х3:	U _S (4 A)	DI	-	DI	_
	X2:	U _S (4 A)	DI	-	DI	_
	X1:	U _S (4 A)	DI	_	DI	-

Tabelle 6: Port-Konfiguration von 0980 XSL 3903...-Varianten

LioN-X 8DI8DO-Ports ohne galvanische Trennung der Ausgänge

Geräte- variante	Port	Pin 1 U _S	Pin 4 / Ch. A (In/Out)		Pin 2 / Ch. B (In/Out)	
	Info:	-	Type 3	Supply by U _L	Type 3	Supply by U _L
	X8:	-	_	DO (2 A)	-	DO (2 A)
	X7:	_	_	DO (2 A)	_	DO (2 A)
0980 XSL	X6:	-	_	DO (2 A)	-	DO (2 A)
3923	X5:	_	_	DO (2 A)	_	DO (2 A)
	X4:	U _S (200 mA)	DI	_	DI	-
	X3:	U _S (200 mA)	DI	-	DI	-
	X2:	U _S (200 mA)	DI	-	DI	-
	X1:	U _S (200 mA)	DI	-	DI	-

Tabelle 7: Port-Konfiguration von 0980 XSL 3923...-Varianten

5 Übersicht der Produktmerkmale

5.1 PROFINET Produktmerkmale

Datenverbindung

Als Anschlussmöglichkeit bietet LioN-X den weit verbreiteten M12-Steckverbinder mit D-Kodierung für das PROFINET IO-Netz.

Darüber hinaus sind die Steckverbinder farbkodiert, um eine Verwechslung der Ports zu verhindern.

Übertragungsraten

Unterstützung von 100 Mbit/s mit Auto-Crossover und Auto-Negotiation entsprechend IEEE 802.3.

PROFINET RT IO Device

Das LioN-X I/O Device unterstützt *PROFINET RT (Real-Time)*. Dadurch wird die Übertragung von zeitkritischen Prozessdaten mittels Echtzeitkommunikation zwischen den Netzkomponenten ermöglicht.

PROFINET-Spezifikation V2.41, Conformance Class C (CC-C)

Das LioN-X I/O Device erfüllt die PROFINET-Spezifikation V2.41 und die Anforderungen der Conformance Class C (CC-C) für den integrierten Switch. Das bedeutet, dass das Gerät in PROFINET-IRT-Netzwerken verwendet werden kann.

Integrierter Switch

Der integrierte Ethernet-Switch mit Conformance Class C (CC-C) verfügt über 2 PROFINET-Ports und erlaubt somit den Aufbau einer Linien- oder Ringtopologie für das PROFINET IO-Netz.

Media Redundancy Protocol

Das zusätzlich implementierte Media Redundancy Protokoll (MRP) ermöglicht den Entwurf einer hochverfügbaren Netzinfrastruktur.

Fast Start-Up (FSU)

Fast Start-Up ermöglicht einem LioN-X I/O Device durch einen beschleunigten Bootprozess eine besonders schnelle Aufnahme der Kommunikation in einem PROFINET-Netz. Damit ist beispielsweise ein schnellerer Werkzeugwechsel möglich. Die FSU-Funktionalität ermöglicht die Kommunikation des Netzwerks in weniger als 500 ms.¹

Shared Device

Mithilfe der Shared Device-Funktionen können 2 Steuerungen über eine PROFINET-Schnittstelle auf dasselbe I/O Device zugreifen. Dies erfolgt durch Kopieren der Konfiguration des I/O Device in die 1. und 2. Steuerung und die anschließende Zuweisung der Konfiguration zur 2. Steuerung als Shared Device (gemeinsames Gerät). Jeder Sub-Slot mit I/O-Daten kann einer der beiden SPSen zugeordnet werden, die sich die I/O-Daten des I/O Device teilen.

DCP

Die Master nutzen zur automatisierten Zuweisung von IP-Adressen das DCP Protokoll.

Net Load Class III

Die Geräte bieten eine erweiterte Robustheit gegenüber Netzlast gemäß Net Load Class III.

LLDP

Für die Geräteerkennung im näheren Umfeld (Nachbarschaftserkennung) wird das LLDP-Protokoll eingesetzt.

Gemessen gemäß der Spezifikation: Interner Switch ist bereit für das Versenden von Telegrammen.

SNMPv1

Das SNMPv1-Protokoll (gemäß PROFINET-Standard V2.35) regelt die Überwachung von Netzkomponenten und die Kommunikation zwischen Master und Device (kann nicht eigenständig betrieben werden).

Alarm- und -Diagnosemeldungen

Die Module bieten erweiterte PROFINET-Alarm- und -Diagnosemeldungen.

I&M-Funktionen

Identifikations- und Maintenance-Daten (I&M) sind im Modul gespeicherte Informationen. Die Identifikationsdaten sind Herstellerinformationen zum Modul, die ausschließlich gelesen werden können. Die Maintenance-Daten sind während der Projektierung erstellte systemspezifische Informationen. Online lassen sich Module über die I&M-Daten eindeutig identifizieren.

Unterstützt werden die modulspezifischen I&M-Funktionen nach dem PNO 2.832 Standard (Integration für PROFINET, Edition 2):

▶ I&M0 ... I&M3 für das Interface-Modul (Access-Slot, Sub-Slot 0x8000)

GSDML-gestützte Konfiguration und Parametrierung der I/O-Ports

Sie haben die Möglichkeit, die I/O-Ports der Master-Geräte mittels GSDML innerhalb eines Engineering-Tools einer SPS zu konfigurieren und zu parametrieren.

5.2 Integrierter Webserver

Anzeige der Netzparameter

Lassen Sie sich Netzparameter wie IP-Adresse, Subnetz-Maske und Gateway anzeigen.

Anzeige der Diagnostik

Sehen Sie die Diagnosedaten über den integrierten Webserver ein.

Benutzerverwaltung

Verwalten Sie über den integrierten Webserver bequem alle Benutzer.

5.3 Sicherheitsmerkmale

Firmware-Signatur

Die offiziellen Firmware-Update-Pakete beinhalten eine Signatur, die dabei hilft, das System vor manipulierten Firmware-Updates zu schützen.

Syslog

Die LioN-X Multiprotokoll-Varianten unterstützen die Nachverfolgbarkeit von Systemmeldung durch die zentrale Verwaltung und Speicherung via Syslog.

User-Manager

Der Webserver bietet einen User-Manager, der Ihnen dabei hilft, das Web-Interface gegen unerlaubte Zugriffe zu schützen. Sie können die Benutzer in Gruppen mit unterschiedlichen Zugriffs-Leveln wie "Admin" oder "Write" verwalten.

Standard-Benutzereinstellungen:

User: admin

Password: private

Achtung: Passen Sie die Standard-Benutzereinstellungen an, um dabei zu helfen, das Gerät gegen unerlaubte Zugriffe zu schützen.

5.4 Sonstige Merkmale

Schnittstellenschutz

Die Geräte verfügen über einen Verpol-, Kurzschluss- und Überlastungsschutz für alle Schnittstellen.

Für weitere Details, beachten Sie den Abschnitt Port-Belegungen auf Seite 33.

Failsafe

Die Geräte unterstützen eine Fail-Safe-Funktion. Damit haben Sie die Möglichkeit, das Verhalten jedes einzelnen als Ausgang konfigurierten Kanals im Falle eines Verlusts der SPS-Kommunikation festzulegen.

Industrial Internet of Things

LioN-X ist bereit für Industrie 4.0 und unterstützt die Integration in IIoT-Netzwerke über REST API und die IIoT-relevanten Protokolle MQTT, OPC UA und CoAP.

Farbkodierte Steckverbinder

Die farbkodierten Anschlüsse unterstützen Sie dabei, Verwechslungen bei der Verkabelung zu vermeiden.

Schutzarten: IP65 / IP67 / IP69K

Die IP-Schutzart beschreibt mögliche Umwelteinflüsse, denen die Geräte bedenkenlos ausgesetzt werden können, ohne dabei beschädigt zu werden oder für Anwender eine Gefahr darzustellen.

Die komplette LioN-X-Familie bietet IP65, IP67 und IP69K.

6 Montage und Verdrahtung

6.1 Allgemeine Informationen

Montieren Sie das Gerät mit 2 Schrauben (M4 x 25/30) auf einer ebenen Fläche. Das hierfür erforderliche Drehmoment beträgt 1 Nm. Nutzen Sie bei allen Befestigungsarten Unterlegscheiben nach DIN 125.

Achtung: Für die Ableitung von Störströmen und die EMV-Festigkeit verfügen die Geräte über einen Erdanschluss mit einem M4-Gewinde. Dieser ist mit dem Symbol für Erdung und der Bezeichnung "FE" gekennzeichnet.

Achtung: Verbinden Sie das Gerät mit der Bezugserde mittels einer Verbindung von geringer Impedanz. Im Falle einer geerdeten Montagefläche können Sie die Verbindung direkt über die Befestigungsschrauben herstellen.

Achtung: Verwenden Sie bei nicht geerdeter Montagefläche ein Masseband oder eine geeignete FE-Leitung (FE = Funktionserde). Schließen Sie das Masseband oder die FE-Leitung durch eine M4-Schraube am Erdungspunkt an und unterlegen Sie die Befestigungsschraube, wenn möglich, mit einer Unterleg- und Zahnscheibe.

6.2 Äußere Abmessungen

6.2.1 LioN-X Digital-I/O Multiprotokoll-Varianten

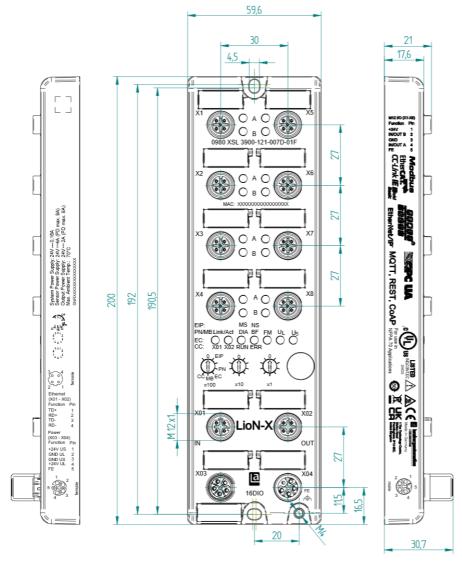


Abb. 1: 0980 XSL 3900-121-007D-01F

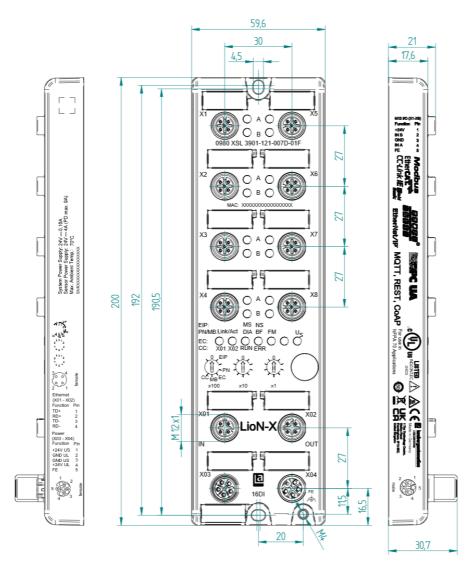


Abb. 2: 0980 XSL 3901-121-007D-01F

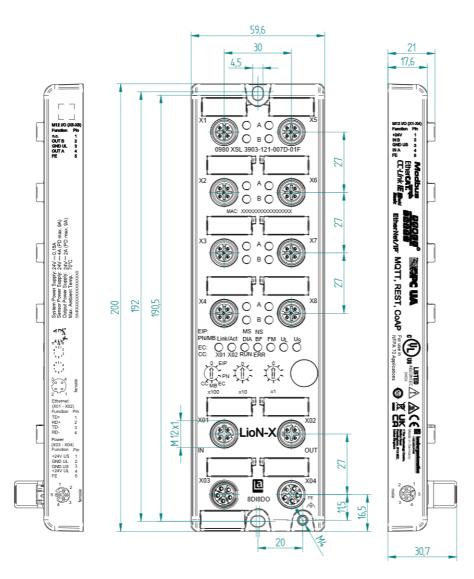


Abb. 3: 0980 XSL 3903-121-007D-01F

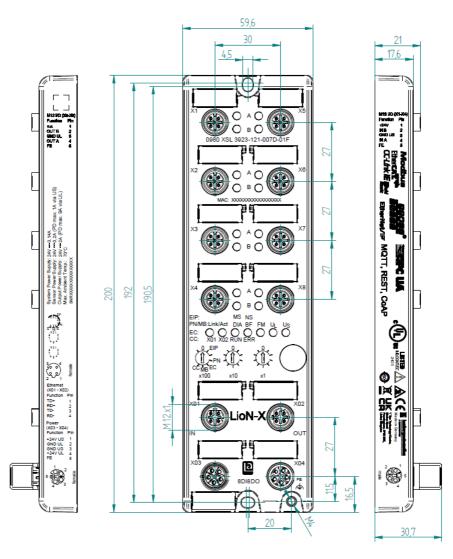


Abb. 4: 0980 XSL 3923-121-007D-01F

6.2.2 Hinweise

Achtung:

Für **UL-Anwendungen**, schließen Sie Geräte nur unter der Verwendung eines UL-zertifizierten Kabels mit geeigneten Bewertungen an (CYJV oder PVVA). Um die Steuerung zu programmieren, nehmen Sie die Herstellerinformationen zur Hand, und verwenden Sie ausschließlich geeignetes Zubehör.

Nur für den Innenbereich zugelassen. Bitte beachten Sie die maximale Höhe von 2000 m. Zugelassen bis maximal Verschmutzungsgrad 2.

Warnung: Terminals, Gehäuse feldverdrahteter Terminalboxen oder Komponenten können eine Temperatur von +60 °C übersteigen.

Warnung: Für **UL-Anwendungen** bei einer maximalen Umgebungstemperatur von +70 °C:

Verwenden Sie temperaturbeständige Kabel mit einer Hitzebeständigkeit bis mindestens +125 °C für alle LioN-X- und LioN-Xlight-Varianten.

Warnung: Beachten Sie die folgenden Maximalströme für die Sensorversorgung von Class A-Geräten:

Max. 4,0 A pro Port; für **UL-Anwendungen** max. 5,0 A für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8; max. 9,0 A gesamt (mit Derating) für die ganze Port-Gruppe X1 .. X8.

Warnung: Beachten Sie die folgenden Maximalströme für die Sensorversorgung von Class A/B-Geräten:

Max. 4,0 A pro Port; für **UL-Anwendungen** max. 5,0 A aus der U_{S-S} Stromversorgung für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8 und max. 5,0 A aus der U_{AUX} -Stromversorgung für die Port-Gruppe X5/X6/X7/X8; max. 9,0 A in Summe (mit Derating) für die gesamte Port-Gruppe (X1 .. X8).

6.3 Port-Belegungen

Alle Kontaktanordnungen, die in diesem Kapitel dargestellt sind, zeigen die Ansicht von vorne auf den Steckbereich der Steckverbinder.

6.3.1 Ethernet-Ports, M12-Buchse, 4-polig, D-kodiert

Farbkodierung: grün

Abb. 5: Schemazeichnung Port X01, X02

Port	Pin	Signal	Funktion
Ethernet	1	TD+	Sendedaten Plus
Ports X01, X02	2	RD+	Empfangsdaten Plus
	3	TD-	Sendedaten Minus
	4	RD-	Empfangsdaten Minus

Tabelle 8: Belegung Port X01, X02

Vorsicht: Zerstörungsgefahr! Legen Sie die Spannungsversorgung nie auf die Datenkabel.

6.3.2 Spannungsversorgung mit M12-Power L-kodiert

Farbkodierung: grau

Abb. 6: Schemazeichnung M12 L-Kodierung (Stecker X03 für Power In)

Abb. 7: Schemazeichnung M12 L-Kodierung (Buchse X04 für Power Out)

Spannungsversorgung	Pin	Signal	Funktion
	1	U _S (+24 V)	Sensor-/Systemversorgung
	2	GND_U _L	Masse/Bezugspotential U _L
	3	GND_U _S	Masse/Bezugspotential U _S
	4	U _L (+24 V)	Spannungsversorgung Aktuatorversorgung
	5	FE	Funktionserde

Tabelle 9: Belegungsplan Ports X03 und X04

Achtung: Verwenden Sie ausschließlich Netzteile für die System-/Sensor- und Aktuatorversorgung, welche PELV (Protective Extra Low Voltage) oder SELV (Safety Extra Low Voltage) entsprechen. Spannungsversorgungen nach EN 61558-2-6 (Trafo) oder EN 60950-1 (Schaltnetzteile) erfüllen diese Anforderungen.

Achtung: Für das Eingangsmodul 0980 XSL 3901-xxx werden die beiden Kontakte 1 und 5 für die Spannungsversorgung der Aktorik nicht benötigt. Gleichwohl sind diese beiden Kontakte auf Stecker- und Buchsenseite miteinander gebrückt, um eine 5-polige Weiterleitung der Spannungsversorgung zu einem nachfolgenden Modul zu ermöglichen.

6.3.3 I/O-Ports als M12-Buchse

Farbkodierung: schwarz

Abb. 8: Schemazeichnung I/O-Port als M12-Buchse

6.3.3.1 I/O-Ports

0980 XSL 3900-121	Pin	Signal	Funktion
16DIO	1	+24 V	Spannungsversorgung +24 V
X1 X8	2	IN/OUT	Ch. B: Digitaler Eingang oder digitaler Ausgang
	3	GND	Masse/Bezugspotential
	4	IN/OUT	Ch. A: Digitaler Eingang oder digitaler Ausgang
	5	FE	Funktionserde

0980 XSL 3901-121	Pin	Signal	Funktion
16DI	1	+24 V	Spannungsversorgung +24 V
X1 X8	2	IN	Ch. B: Digitaler Eingang
	3	GND U _S	Masse/Bezugspotential
	4	IN	Ch. A: Digitaler Eingang
	5	FE	Funktionserde

0980 XSL 39x3-121	Pin	Signal	Funktion
8DI8DO	1	+24 V	Spannungsversorgung +24 V
X1 X4	2	IN	Ch. B: Digitaler Eingang
	3	GND U _S	Masse/Bezugspotential
	4	IN	Ch. A: Digitaler Eingang
	5	FE	Funktionserde
8DI8DO	1	n.c.	_
X5 X8	2	OUT	Ch. B: Digitaler Ausgang
	3	GND U _L	Masse/Bezugspotential
	4	OUT	Ch. A: Digitaler Ausgang
	5	FE	Funktionserde

Tabelle 10: Belegungsplan I/O-Ports

7 Inbetriebnahme

7.1 GSDML-Datei

Zur Konfiguration der LioN-X-Varianten wird eine GSDML-Datei im XML-Format benötigt. Alle Gerätevarianten sind in einer GSDML-Datei zusammengefasst. Die Datei kann auf den Produktseiten unseres Online-Kataloges heruntergeladen werden: catalog.belden.com

Auf Anfrage wird die GSDML-Datei auch vom Support-Team zugeschickt.

Die GSDML-Datei und die zugehörigen Bitmap-Dateien sind in einer Archivdatei mit dem Namen **GSDML-V2.41-BeldenDeutschland-LioN-X-yyyymmdd.xml** zusammengefasst.

yyyymmdd steht dabei für das Ausgabedatum der Datei.

Laden Sie diese Datei herunter, und entpacken Sie sie.

In Siemens TIA Portal[®] legen Sie ein neues Projekt an und öffnen den Hardware Manager über Ein Gerät konfigurieren [Configure a device]. Über den Menübefehl Extras [Options] > Gerätebeschreibungsdateien (GSD) verwalten [Manage general station description files (GSD)] geben Sie den Pfad zur GSD-Datei an und installieren diese.

Die LioN-X-Varianten stehen anschließend im Hardwarekatalog zur Verfügung.

7.2 MAC-Adressen

Jedes Gerät besitzt 3 eindeutige zugewiesene MAC-Adressen, die nicht durch den Benutzer änderbar sind. Die erste zugewiesene MAC-Adresse ist auf dem Gerät aufgedruckt.

7.3 Auslieferungszustand

PROFINET-Parameter im Auslieferungszustand bzw. nach Factory Reset:

PROFINET-Name:	kein Name vergeben
IP-Adresse:	0.0.0.0
Subnetz-Maske:	0.0.0.0
Gerätebezeichnungen:	0980 XSL 3900-121-007D-01F 0980 XSL 3901-121-007D-01F 0980 XSL 3903-121-007D-01F 0980 XSL 3923-121-007D-01F
Herstellerkennung:	0x016a
Device-ID:	0x0400

7.4 Drehkodierschalter einstellen

Die folgenden LioN-X-Varianten unterstützen Multiprotokoll- Anwendungen für die Protokolle EtherNet/IP (E/IP), PROFINET (P), EtherCAT® (EC), Modbus TCP (MB) und CC-Link IE Field Basic (CC):

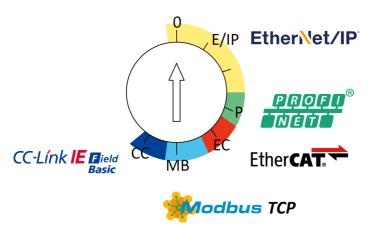
- ▶ 0980 XSL 3900-121-007D-01F
- 0980 XSL 3901-121-007D-01F
- 0980 XSL 3903-121-007D-01F
- ▶ 0980 XSL 3923-121-007D-01F

Vorsicht:

Gefahr von Geräteschaden durch Speicherfunktionsstörung

Jegliche Unterbrechung der Stromversorgung des Gerätes während und nach der Protokollauswahl kann zu einem korrupten Gerätespeicher führen.

Nach Auswählen eines Protokolls mit anschließendem Neustart des Gerätes wird das neue Protokoll initialisiert. Dies kann bis zu 15 Sekunden dauern. In dieser Zeit ist das Gerät nicht verwendbar und die LED-Anzeigen sind außer Funktion. Nach Abschluss des Protokollwechsels kehren die LED-Anzeigen in den Normalbetrieb zurück und das Gerät kann wieder verwendet werden.


► Stellen Sie sicher, dass die Stromversorgung während des gesamten Vorgangs aufrecht erhalten bleibt.

Die LioN-X Multiprotokoll-Varianten ermöglichen es Ihnen, für die Kommunikation innerhalb eines Industrial-Ethernet-Systems verschiedene Protokolle auszuwählen. Dadurch lassen sich die Digitalen I/O Devices mit Multiprotokoll-Funktion in verschiedene Netze einbinden, ohne für jedes Protokoll spezifische Produkte zu erwerben. Außerdem haben Sie durch diese Technik die Option, ein und dasselbe I/O Device in verschiedenen Umgebungen einzusetzen.

Über Drehkodierschalter auf der unteren Vorderseite der Geräte stellen Sie komfortabel und einfach sowohl das Protokoll als auch die Adresse des Gerätes ein, sofern das zu verwendende Protokoll dies unterstützt. Haben Sie eine Protokollauswahl vorgenommen und einmal die zyklische

Kommunikation gestartet, speichert das Gerät diese Einstellung permanent und nutzt das gewählte Protokoll ab diesem Zeitpunkt. Um mit diesem Gerät ein anderes unterstütztes Protokoll zu nutzen, führen Sie einen Factory Reset durch.

Die Multiprotokoll-Geräte sind mit insgesamt drei Drehkodierschaltern ausgestattet. Mit dem ersten Drehkodierschalter (x100) nehmen Sie die Protokolleinstellungen vor, indem Sie die entsprechende Schalterposition verwenden. Zusätzlich wird x100 dafür verwendet, die drittletzte Stelle der IP-Adresse für EIP einzustellen.

Über die anderen Drehkodierschalter (x10 / x1) legen Sie die letzten zwei Stellen der IP-Adresse fest, wenn Sie EtherNet/IP, Modbus TCP oder CC-Link IE Field Basic verwenden.

Protokoll	x100	x10	x1
EtherNet/IP	0-2	0-9	0-9
PROFINET	Р	_	_
EtherCAT®	EC	-	-
Modbus TCP	МВ	0-9	0-9
CC-Link IE Field	СС	0-9	0-9

Tabelle 11: Belegung der Drehkodierschalter für die einzelnen Protokolle

Die Einstellung, die Sie für die Auswahl eines Protokolls vornehmen, wird in den protokollspezifischen Abschnitten ausführlich beschrieben.

Im Auslieferungszustand sind keine Protokolleinstellungen im Gerät gespeichert. In diesem Fall ist ausschließlich die Auswahl des gewünschten Protokolls erforderlich. Für die Übernahme einer geänderten Drehschalter-Einstellung (Protokolleinstellung) ist der Neustart oder das Zurücksetzen (Reset) über das Web-Interface erforderlich.

Nachdem Sie die Einstellung für das Protokoll mithilfe der Drehkodierschalter vorgenommen haben, speichert das Gerät diese Einstellung, sobald es die zyklische Kommunikation aufbaut. Anschließend ist die Änderung des Protokolls über den Drehkodierschalter nicht mehr möglich. Ab diesem Zeitpunkt wird das Gerät immer mit dem gespeicherten Protokoll gestartet. In Abhängigkeit vom Protokoll ist die Änderung der IP-Adresse möglich.

Setzen Sie zum Ändern des Protokolls das Gerät auf die Werkseinstellungen zurück. Auf diese Weise werden die internen Protokoll-Daten auf die Werkseinstellungen zurückgesetzt. Informationen zum Zurücksetzen auf die Werkseinstellungen finden Sie in Kapitel Werkseinstellungen wiederherstellen auf Seite 42.

Falls Sie den Drehkodierschalter auf ungültige Stellung positionieren, meldet das Gerät dies mittels eines Blink-Codes (die LED BF/MS blinkt dreimal).

7.4.1 PROFINET

Wenn Sie PROFINET verwenden möchten, setzen Sie den ersten Drehkodierschalter auf den Wert "P".

7.4.2 Werkseinstellungen wiederherstellen

Beim Zurücksetzen auf die Werkseinstellungen werden die Original-Werkseinstellungen wiederhergestellt und somit die zum betreffenden Zeitpunkt vorgenommenen Änderungen und Einstellungen zurückgesetzt. Hierbei wird auch die Protokollauswahl zurückgesetzt. Um das Modul auf die Werkseinstellungen zurückzusetzen, setzen Sie den ersten Drehkodierschalter (x100) auf 9, den zweiten (x10) auf 7 und den dritten (x1) ebenfalls auf 9.

Führen Sie anschließend einen Neustart durch, und warten Sie 10 Sekunden, da im internen Speicher Schreibvorgänge ausgeführt werden.

Während dem Zurücksetzen auf die Werkseinstellungen, blinkt die U_S -LED rot. Nachdem die internen Speicher-Schreibprozesse abgeschlossen sind, kehrt die U_S -LED dazu zurück, konstant grün oder rot zu leuchten, abhängig von der tatsächlichen U_S -Spannung.

	x100	x10	x1
Factory Reset	9	7	9

Führen Sie die in Abschnitt Drehkodierschalter einstellen auf Seite 39 beschriebenen Schritte erneut aus, um ein neues Protokoll auszuwählen.

Für das Rücksetzen auf Werkseinstellungen via Software-Konfiguration, beachten Sie Kapitel OPC UA-Konfiguration auf Seite 116 und die Konfigurationskapitel.

7.5 SNMPv1

Das PROFINET IO-Gerät unterstützt die in der PROFINET-Spezifikation geforderten SNMP-Objekte gemäß Protokollstandard SNMPv1. Dazu gehören Objekte aus der RFC 1213 MIB-II (System Group und Interfaces Group) und der LLDP-MIB.

Passwörter:

- ► Read community:public
- ▶ Write community: private

8 Konfiguration und Betrieb mit dem SIEMENS TIA Portal®

Achtung: Die abgebildeten Beispiele des SIEMENS TIA Portal[®] wurden in TIA V15 erstellt.

Nach der Installation der GSDML-Datei für die LioN-X PROFINET-Varianten stehen diese im Hardware-Katalog unter **Other field devices** > **PROFINET IO** > **IO** > **Belden Deutschland GmbH - Lumberg Automation** > **Lumberg Automation LioN-X** zur Verfügung.

- **1.** Konfigurieren Sie zunächst das TIA Portal®-Projekt sowie das Steuerungssystem in gewohnter Weise. Vergeben Sie für den PROFINET-Port der Steuerung eine IP-Adresse und Subnetzmaske.
- **2.** Wählen Sie anschließend das gewünschte Gerät aus dem Hardware-Katalog aus:

Abb. 9: TIA Portal® Hardware-Katalog

3. Klicken Sie auf die Artikelbezeichnung der Module im Hardware-Katalog und ziehen Sie das gewünschte Gerät via Drag and Drop in die Netzwerkansicht:

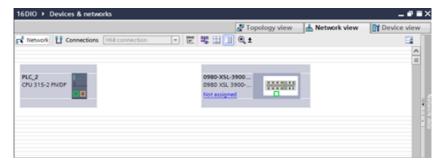


Abb. 10: Netzwerkansicht

4. Weisen Sie das Gerät dem PROFINET-Netzwerk zu:

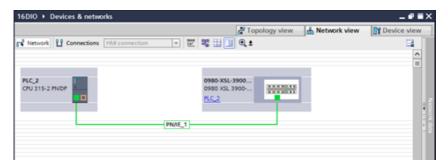


Abb. 11: Gerät zuweisen

5. Wechseln Sie in die Gerätekonfiguration und wählen Sie das gewünschte Gerät aus, um sich die Konfigurationsmöglichkeiten anzeigen zu lassen:

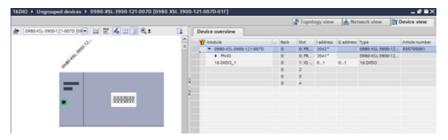


Abb. 12: Gerät konfigurieren

8.1 Vergabe eines Gerätenamens und der IP-Adresse

PROFINET IO-Geräte werden im PROFINET über einen eindeutigen Gerätenamen adressiert. Dieser kann vom Anwender frei vergeben werden, darf jedoch nur einmal im Netz vorkommen.

 Ein Klick auf das Gerätesymbol oder in die erste Zeile der Geräteübersicht öffnet die Einstellungen für PROFINET-Schnittstelle > Ethernet-Adressen:

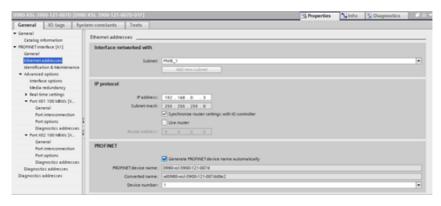


Abb. 13: ETHERNET-Adressen

2. Überprüfen Sie, ob die Steuerung und das I/O-Gerät auf demselben ETHERNET-Subnetz sind.

- 3. Verwenden sie entweder die Voreinstellungen für Gerätenamen und IP-Adresse oder ändern Sie diese entsprechend Ihren Wünschen ab.
- 4. Für ein korrekt arbeitendes Setup muss der ausgewählte Gerätename online im I/O-Gerät programmiert werden. Sofern die HW installiert wurde, können Sie problemlos in den Onlinemodus wechseln. Das neue I/O-Gerät sollte über PROFINET bereits erreichbar sein:

Abb. 14: Online verbinden

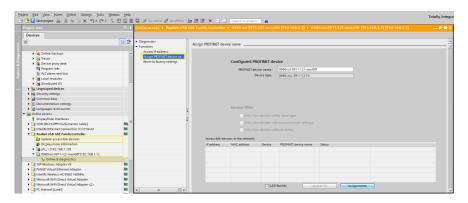


Abb. 15: Onlinemodus

5. Geben Sie den gleichen Gerätenamen ein, den Sie zuvor offline im Project konfiguriert haben:

Abb. 16: Gerätenamen eingeben

8.2 Konfiguration der I/O-Ports

Für das Gerät 0980 XSL 3900-121-007D-01F sind standardmäßig alle I/O-Kanäle als 16 DI/DO vorkonfiguriert.

Das bedeutet, dass Sie an jeden I/O-Kanal einen Sensor oder einen Aktor anschließen können, ohne die Kanalrichtung (Eingang oder Ausgang) zusätzlich konfigurieren zu müssen. Wenn Sie einen Sensor anschließen, aktivieren Sie den entsprechenden digitalen Ausgang nicht über die SPS.

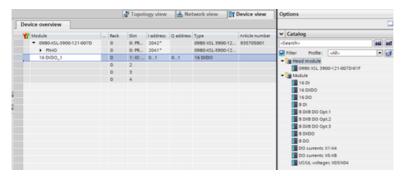


Abb. 17: Voreinstellung der Kanäle

In der *Catalog*-Ansicht sind zusätzliche vorkonfigurierte Kanaleinstellungen verfügbar. Wenn Sie unter 16 DI/DO den "Slot 1" entfernen, können Sie beispielsweise alle I/O-Kanäle auf 16 DO einstellen, indem Sie "Modul 16 DO" aus dem *Catalog* wählen.

Die in der Geräte-Übersicht vorgegeben Eingangs- und Ausgangsadressen können geändert werden.

8.2.1 I/O-Konfiguration löschen

1. To delete the current I/O configuration, select the respective slot in the Device overview: Um die aktuelle I/O-Konfiguration zu löschen, wählen Sie den entsprechenden Slot in der Geräteübersicht (Device overview) aus:

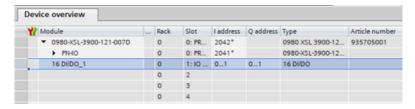


Abb. 18: Geräteübersicht

2. Führen Sie einen Rechtsklick aus und wählen Sie im angezeigten Menü die Option *Löschen (Delete)*:

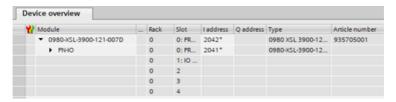


Abb. 19: Freier I/O-Slot 1

8.2.2 I/O-Konfiguration ändern

Der Ordner *Module* des I/O-Gerätes im *Hardwarekatalog* zeigt alle konfigurierbaren Optionen an, die ausgewählt werden können:

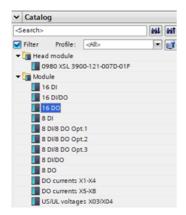
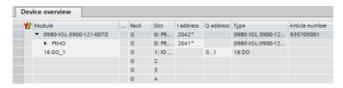



Abb. 20: I/O-Kanalkonfiguration

Wählen Sie die gewünschte Option aus, und halten Sie die linke Maustaste gedrückt, um die Konfiguration in einen freien Slot zu ziehen (Drag & Drop):

Drei zusätzliche Slots (2 .. 4) stehen für optionale Messungen der Ausgangsströme und Ausgangsspannungen zur Verfügung:

8.3 Parametrierung des Status-/Control-Moduls

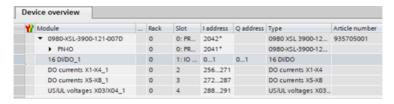
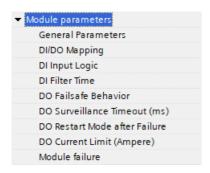
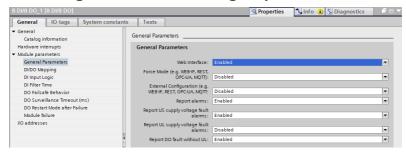


Abb. 21: Status-/Control-Modul

Parameter der 16 DI/DO-Gerätevariante:




Abb. 22: Parameter der 16 DI/DO-Gerätevariante

Die Varianten 0980 XSL 3901... und 0980 XSL 3903... unterstützen Sub-Sets der genannten Parameter. Die Parameter Sub-Sets der Variante 0980 XSL 3900... können abweichen in Abhängigkeit der I/O-Konfiguration (beispielsweise "8 DI" oder "16 DI/DO").

Bestimmte Konfigurationsparameter gelten nur für Digitale Ausgänge oder nur für Digitale Eingänge. Damit diese wirksam sind, muss der entsprechende Kanal über eine Ausgangs- oder Eingangsfunktionalität verfügen und auch entsprechend konfiguriert sein.

Konfigurationsparameter	Gültig für Kanalkonfiguration
Surveillance Timeout	DIO, Output
Failsafe	DIO, Output
Auto Restart	DIO, Output
Current Limit	DIO, Output
Input Filter Time	DIO, Input
Input Logic	DIO, Input

8.3.1 Allgemeine Einstellungen ("General Parameters")

Web Interface

Der Zugriff auf das Web-Interface kann mit diesem Parameter auf "Enabled" oder "Disabled" gesetzt werden. Im Falle der "Diasbled"-Einstellung sind die Webseiten nicht erreichbar.

Voreinstellung: Enabled

Force Mode

Die Ein- und Ausgangs-Daten I/O können aus Implementierungsgründen erzwungen (= geändert) werden. Dies kann über verschiedene Schnittstellen (z.B. Web-Interface, REST, OPC UA, MQTT) erfolgen. Mit dieser Funktion kann ein mögliches Forcing von I/O-Daten aktiviert ("Enabled") oder deaktiviert ("Disabled") werden.

Voreinstellung: Disabled

Gefahr: Gefahr von Körperverletzung oder Tod! Unbeaufsichtigtes Forcing kann zu unerwarteten Signalen und unkontrollierten Maschinenbewegungen führen.

External Configuration

Konfigurations- und Parameterdaten können über verschiedene externe Schnittstellen außerhalb der GSDML-Konfiguration (z.B. Web-Interface, REST, OPC UA, MQTT) eingestellt werden. Mit dieser Option kann die externe Konfiguration aktiviert oder deaktiviert werden. Eine externe Konfiguration kann nur dann vorgenommen werden, solange keine zyklische SPS-Verbindung aktiv ist. Jede neue SPS-Verbindung überschreibt die externen Konfigurationseinstellungen.

Voreinstellung: Disabled

Report Alarms

Mit diesem globalen Parameter können alle PROFINET-Alarme aktiviert ("Enabled") oder deaktiviert ("Disabled") werden.

Voreinstellung: Enabled

Report U_S supply voltage fault alarms

Der $U_{\rm S}$ supply voltage fault alarm (Fehleralarm der $U_{\rm S}$ -Versorgungsspannung) kann mit diesem Parameter auf "Disabled" oder "Enabled" eingestellt werden.

Voreinstellung: Enabled

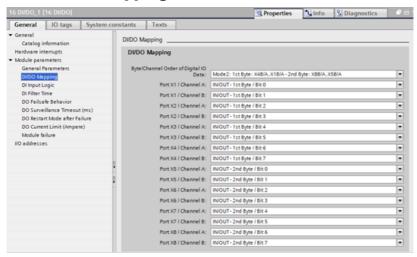
Report U_L supply voltage fault alarms

Der U_L supply voltage fault alarm (Fehleralarm der U_L -Versorgungsspannung) kann mit diesem Parameter auf "Disabled", "Enabled" oder "Auto Mode" eingestellt werden.

In der Einstellung "Auto Mode" wird die U_L-Diagnose mit der ersten Erkennung einer steigenden Flanke nach dem Power-Up aktiviert.

Voreinstellung: Disabled

Achtung: Die Option Report U_L supply voltage fault ist in der Voreinstellung deaktiviert, um Diagnosemeldungen aufgrund des späteren Ein- oder Ausschaltens der Spannungsversorgung zu vermeiden


Report DO fault without U_L

Die Diagnose der digitalen Ausgänge kann in Abhängigkeit vom U_L -Status konfiguriert werden.

Ist der Ausgang aktiv ohne aktive U_L, während dieser Parameter aktiviert ist, wird eine Diagnosemeldung für den Ausgabekanal generiert.

Voreinstellung: Enabled

8.3.2 DI/DO Mapping

Byte/Channel order of Status/Control I/O data

Mit diesem Parameter können 4 (Mode 1 - 4) vordefinierte Bit-Mappings für die digitalen I/O-Bits gewählt werden.

Mode 5 kann für ein freies, nutzerdefiniertes Mapping verwendet werden. Die Parameter-Einstellungen "Port X1 / Channel A" – "Port X8 / Channel B" müssen hierfür genutzt werden. Diese Parameter ermöglichen alle I/O-Kanäle dazu, frei einem Bit in den Slot-1-I/O-Daten zugeschrieben zu werden. Beachten Sie, dass doppelte Zuschreibungen an dieser Stelle nicht möglich sind. Wird im LioN-X-Gerät eine fehlerhafte Parametrierung festgestellt, wird ein Fehler registriert.

Wurde Mode 1 – Mode 4 ausgewählt, werden die "Port X1 / Channel A" – "Port X8 Channel B"-Einstellungen im LioN-X-Gerät ignoriert.

Das ausgewählte Mapping wird gleichermaßen für den Input- und Output-Datenverkehr verwendet.

Legende

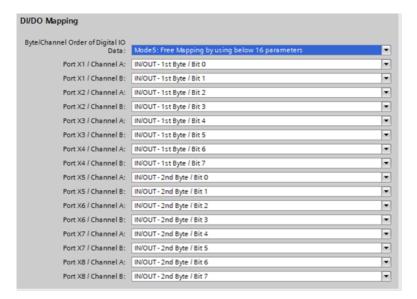
1st Byte = "low address"-Byte in einer Siemens SPS

2nd Byte = "high address"-Byte in einer Siemens SPS

(Trifftt zu, wenn die Siemens SPS das Big-Endian-Format verwendet.)

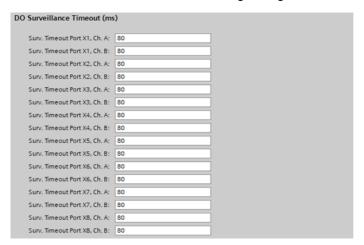
Mode 1:

Mode 2:


Mode 3:

Mode 4:

Mode 5:



Details zum I/O-Mapping finden Sie im Kapitel Zuweisung der Prozessdaten auf Seite 74.

8.3.3 DO Surveillance Timeout (ms)

Für Kanäle, die als Digital Output konfiguriert sind, erlaubt Ihnen die Firmware der Module im speziellen Anwendungsfall, eine Verzögerungszeit einzustellen, bevor die Überwachung des Output-Status aktiviert wird.

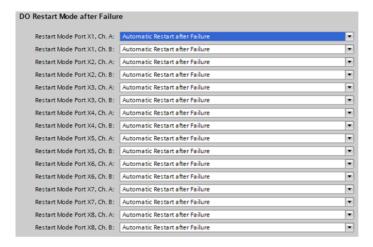
Diese Verzögerungszeit wird als "Surveillance Timeout" (Überwachungs-Timeout) bezeichnet und kann für jeden einzelnen Ausgangskanal eingestellt werden. Die Verzögerungszeit beginnt mit einer steigenden Flanke des Ausgangs-Kontroll-Bits. Nach Ablauf dieser Zeit wird der Ausgang überwacht und Fehlerzustände werden durch Diagnose gemeldet.

Der Parameter *DO Surveillance Timeout (ms)* kann von 0 bis 255 ms eingestellt werden. Im statischen Zustand eines Ausgangskanals, d. h., wenn der Kanal permanent ein- oder ausgeschaltet ist, beträgt der Filterwert (nicht veränderbar) typischerweise 5 ms, bevor im Fall eines festgestellten Ausgangsfehlers eine Diagnosemeldung erzeugt wird.

Voreinstellung: 80 ms

8.3.4 DO Failsafe Behavior

Das Gerät unterstützt eine "Failsafe"-Funktion für die als Digitalausgang genutzten Kanäle. Während der Konfiguration der Geräte kann der Status der PROFINET IO Device-Ausgänge nach einer Unterbrechung oder einem Verlust der Kommunikation im PROFINET IO-Netz definiert werden.


Die folgenden Optionen können ausgewählt werden:

- ▶ Set Low der Ausgangskanal wird deaktiviert bzw. das Ausgangsbit auf "0" gesetzt.
- ▶ Set Low der Ausgangskanal wird aktiviert bzw. das Ausgangs-Bit auf "1" gesetzt.
- ► Hold Last der letzte Ausgangszustand wird beibehalten.

Voreinstellung: Set Low

8.3.5 DO Restart Mode after Failure

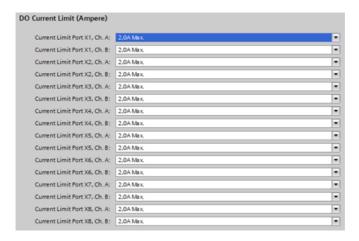
Mit diesem Parameter kann das Neustartverhalten des Digitalausgangs eingestellt werden.

Automatic Restart after Failure:

Im Falle der Erkennung eines Ausgangskurzschlusses oder einer Überlastung wird der Ausgang abgeschaltet. Nach einer Zeitverzögerung wird der Ausgang jedoch automatisch wieder eingeschaltet, um zu prüfen, ob der Überlast- oder Kurzschlusszustand aktiv ist.

Restart after Output Reset:

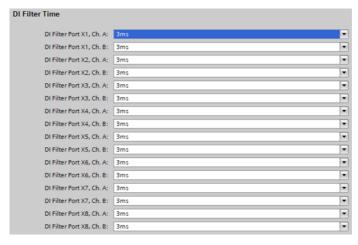
Im Falle der Erkennung eines Ausgangskurzschlusses oder einer Überlastung wird der Ausgang abgeschaltet.


Voreinstellung: Automatic Restart after Failure

8.3.6 DO Current Limit

Mit dieser Option kann ein Modus für den Digital-Output-Switch gewählt werden.

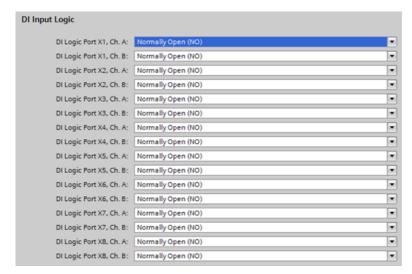
▶ Folgende Werte sind wählbar: 0,5 A; 1,0 A; 1,5 A; 2,0 A; 2,0 A Max.


Durch diese Auswahl kann so das Niveau der Aktuator-Überspannungsdiagnose verwaltet werden. 2.0 A Max. bedeutet, dass die Stromstärkenbegrenzung **nicht** aktiv ist, und dass der maximale Ausgangsstrom für diesen Ausgang verfügbar ist.

Voreinstellung: High-Side Switch (2.0 A Max.)

8.3.7 DI Filter Time

Mit diesem Parameter kann die Filterzeit des Digitaleingangs definiert werden.


Die folgenden Optionen sind verfügbar:

Off; 1 ms; 2 ms; 3 ms; 6 ms; 10 ms; 15 ms

Voreinstellung: 3 ms

8.3.8 DI Input Logic

Über diese Parameter kann die Logik der als digitaler Input genutzten Kanäle eingestellt werden.

NO (Normally Open):

Ein nicht bedämpfter Sensor hat in diesem Fall einen offenen Schaltausgang (Low-Pegel). Der Eingang des Gerätes erkennt einen Low-Pegel und liefert eine "0" an die Steuerung.

Die Kanal-LED zeigt den Status des physischen Eingangs an.

NC (Normally Closed):

Ein nicht bedämpfter Sensor hat in diesem Fall einen geschlossenen Schaltausgang (High-Pegel). Der Eingang des Gerätes erkennt einen High-Pegel, invertiert das Signal und liefert eine "0" an die Steuerung.

Die Kanal-LED zeigt, unabhängig von der Einstellung, den Status der physischen Eingänge an.

Voreinstellung: NO (Normally Open) für alle Kanäle

8.4 Media Redundancy Protocol (MRP)

Mit den LioN-X-Geräten kann über eine Ringtopologie ohne Verwendung zusätzlicher Switches eine redundante PROFINET Kommunikation realisiert werden. Ein MRP Redundanz-Manager schließt dabei den Ring, erkennt Einzelausfälle und sendet im Fehlerfall die Datenpakete über den redundanten Pfad.

Für die Verwendung von MRP sind folgende Voraussetzungen zu erfüllen:

- Alle Geräte müssen MRP unterstützen.
- MRP muss bei allen Geräten aktiviert werden.
- ► Eine Verbindung der Geräte ist ausschließlich über die Ringports möglich. Eine vermaschte Topologie ist daher nicht zulässig.
- ► Es sind max. 50 Geräte im Ring zulässig.
- Alle Geräte haben die gleiche Redundanz-Domäne.
- ▶ Ein Gerät muss als Redundanz-Manager konfiguriert werden.
- ▶ Alle anderen Geräte müssen als Redundanz-Clients konfiguriert werden.
- Es ist kein priorisierter Hochlauf (FSU) zulässig.
- ▶ Die Ansprechüberwachungszeit aller Geräte muss jeweils größer als die Rekonfigurationszeit sein (typischerweise 200 ms, bei LioN-X-Geräten mind. 90 ms).
- ► Es wird empfohlen, an allen Geräten die automatische Netzeinstellung zu verwenden.

In den folgenden Abbildungen wird eine mögliche MRP-Ringkonfiguration dargestellt. Die SPS wird als Redundanz-Manager und alle anderen Geräte als Clients verwendet. Um einen Einzelausfall zu detektieren, empfiehlt es sich die Diagnosealarme zu aktivieren.

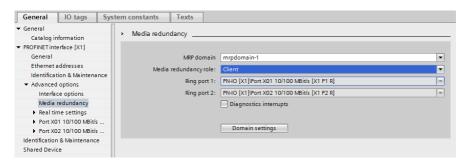


Abb. 23: Beispiel für die Einrichtung eines MRP-Clients im TIA Portal®

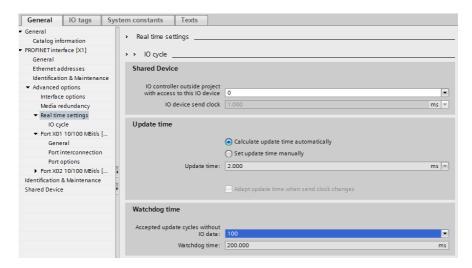


Abb. 24: Beispiel für die Einrichtung der Watchdog-Zeitüberwachung im TIA Portal® für die Nutzung von MRP

8.5 Identification & Maintenance (I&M)

Der PROFINET IO-Gerät besitzt die Fähigkeit, die in der Anlage verbauten Geräte eindeutig über ein elektronisches Typenschild identifizieren zu können. Diese gerätespezifischen Daten können vom Anwender jederzeit azyklisch ausgelesen werden. Darüber hinaus können bei der Installation des Systems im Gerät die Ortskennzeichnung, das Installationsdatum und weiterführende Beschreibungen hinterlegt werden. Die I&M-Funktionen unterstützen die folgenden Möglichkeiten.

8.5.1 Unterstützte I&M-Funktionen

8.5.1.1 I&M-Daten des PN-IO-Gerätes

Zum Lesen (I&M 0 - 3) und Schreiben (I&M 1 - 3) von I&M-Daten muss die entsprechende Hardware-Kennung für Slot 0: **PROFINET Interface X1** gewählt werden:

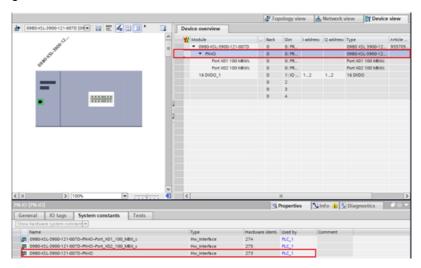


Abb. 25: TIA Portal® Hardware-Identifier des PROFINET-Interface für I&M 0-3 RDREC/WRREC

Die modulspezifischen I&M-Funktionen können über Slot 0 ausgelesen (0-3) bzw. geschrieben (1-3) werden. Die Zuordnung der Datensätze erfolgt dabei über den angegebenen Index.

Datenobjekt	Länge [byte]	Zugang	Standardwert / Beschreibung
MANUFACTURER_ID	2	Read	0x016A (Belden Deutschland GmbH)
ORDER_ID	20	Read	Order number of module in ASCII
SERIAL_NUMBER	16	Read	Defined in production process in ASCII ²
HARDWARE_REVISION	2	Read	Hardware revision of device
SOFTWARE_REVISION	4	Read	Software revision of device
REVISION_COUNTER	2	Read	Wird für jede statisch gespeicherte Parameteränderung am PROFINET IO-Gerät (z. B. Gerätename, d. h. Device Name, oder IP-Adresse) inkrementiert
PROFILE_ID	2	Read	0xF600 (Generic device)
PROFILE_SPECIFIC_TYPE	2	Read	0x0003 (IO-Module)
IM_VERSION	2	Read	0x0101 (I&M Version 1.1)
IM_SUPPORTED	2	Read	0x002E (I&M 1–3 & 5 werden unterstützt)

Tabelle 12: I&M 0 (Slot 0: PROFINET Interface X1, Index 0xAFF0)

Datenobjekt	Länge [byte]	Zugang	Standardwert / Beschreibung
TAG_FUNCTION	32	Read/ Write	0x20 ff. (leer)
TAG_LOCATION	22	Read/ Write	0x20 ff. (leer)

Tabelle 13: I&M 1 (Slot 0: PROFINET Interface X1, Index 0xAFF1)

² Die Seriennummer in den I&M-Daten unterscheidet sich aufgedruckten Seriennummer am Gehäuse. Aufgedruckte Seriennummer am Gehäuse: 9-stellige ARtikelnummer + 9-stellige fortlaufende Nummer I&M0 Seriennummer: 9-stellige fortlaufende Nummer (dieselben letzten 9 Stellen wie in der aufgedruckten Seriennummer am Gehäuse)

Datenobjekt	Länge [byte]	Zugang	Standardwert / Beschreibung
INSTALLATION_DATE	16	Read/ Write	0x20 ff. (leer); Unterstütztes Datenformat ist eine sichtbare Zeichenkette mit einer festen Länge von 16 Byte; "JJJJ-MM-TT hh:mm" oder "JJJJ-MM-TT" mit Leerzeichen

Tabelle 14: I&M 2 (Slot 0: PROFINET Interface X1, Index 0xAFF2)

Datenobjekt	Länge [byte]	Zugang	Standardwert / Beschreibung
DESCRIPTOR	54	Read/ Write	0x20 ff. (leer)

Tabelle 15: I&M 3 (Slot 0: PROFINET Interface X1, Index 0xAFF3)

8.5.2 Lesen und Schreiben von I&M-Daten

SIEMENS TIA Portal[®] bietet in seiner Standardbibliothek Systemfunktionsbausteine an, mit denen die I&M-Daten gelesen und geschrieben werden können. Ein Datensatz enthält dabei einen *BlockHeader* von 6 Byte und den I&M Record.

Die beim Lesen angeforderten Daten bzw. die zu schreibenden Daten beginnen somit erst im Anschluss an den vorhandenen Header. Beim Schreiben ist zusätzlich der Inhalt des Headers zu berücksichtigen. Tabelle 16: Datensatz mit BlockHeader und I&M Record auf Seite 68 veranschaulicht den Aufbau eines Datensatzes.

► Zum Lesen von I&M 0..3 muss der "RDREC block" mit LEN = 6 Byte Block Header + I&M data length konfiguriert werden.

Datenobjekt	Länge [byte]	Datentyp	Coding	Beschreibung
BlockType	2	Word	I&M 0: 0x0020	BlockHeader
			I&M 1: 0x0021	
			I&M 2: 0x0022	
			I&M 3: 0x0023	
BlockLength	2	Word	I&M 0: 0x0038	
			I&M 1: 0x0038	
			I&M 2: 0x0012	
			I&M 3: 0x0038	
BlockVersionHigh	1	Byte	0x01	
BlockVersionLow	1	Byte	0x00	
I&M Data	I&M 0: 54	Byte		I&M Record
	I&M 1: 54			
	I&M 2: 16			
	I&M 3: 54			

Tabelle 16: Datensatz mit BlockHeader und I&M Record

8.5.2.1 I&M Read Record

Lesen von I&M-Daten kann über den standardmäßigen Funktionsblock RDREC (SFB52) in der Siemens PLC realisiert werden. Übergabeparameter sind dabei die logische Adresse des Slots/Sub-Slots (ID) und der I&M-Index (INDEX) zu verwenden. Rückgabeparameter geben die Länge der empfangenen I&M-Daten sowie eine Status- bzw. Fehlermeldung wieder.

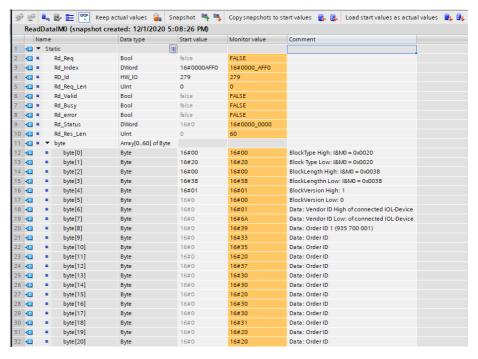


Abb. 26: "Read"-Beispiel I&M0 des PROFINET IO-Gerätes

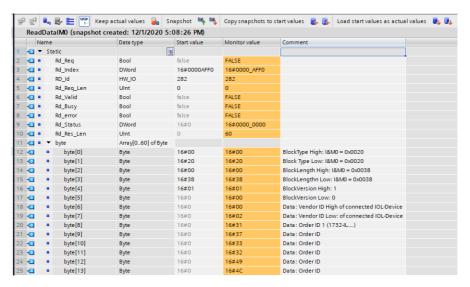


Abb. 27: "Read"-Beispiel I&M0 an Port X1 mit angeschlossenem IOL-Device

8.5.2.2 I&M Write Record

Schreiben von I&M-Daten kann über den standardmäßigen Funktionsblock WRREC (SFB53) in der Siemens PLC realisiert werden. Übergabeparameter sind dabei die logische Adresse des Slots/Sub-Slots (ID), der I&M-Index (INDEX) sowie der Datenlänge (LEN) zu verwenden. Rückgabeparameter geben eine Status- bzw. Fehlermeldung wieder.

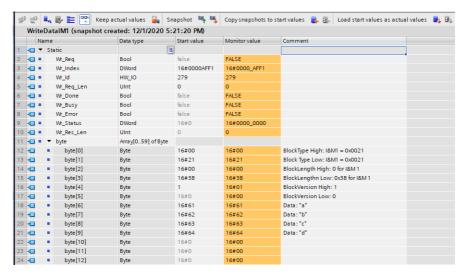
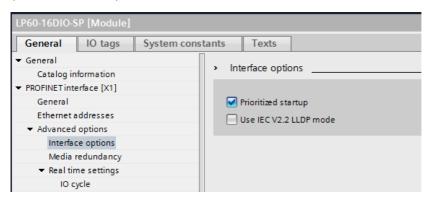
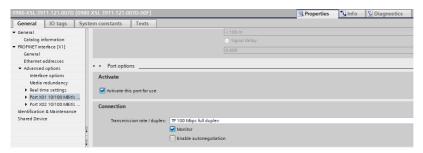



Abb. 28: Beispiel eines abgeschlossenen I&M1-Schreibvorgangs eines **PROFINET IO-Gerätes**


8.6 Fast Start Up (FSU)/Prioritized Startup

LioN-X-Geräte mit Fast-Start-Up-(FSU-)Funktion unterstützen einen optimierten Systemstart. Dies garantiert einen schnelleren Neustart nach der Wiederherstellung der Spannungsversorgung.

Fast Start-Up kann für LioN-X-Geräte mit **PROFINET interface [X1]** > **Advanced options** > **Interface options** (PROFINET-Schnittstelle [X1] > Erweiterte Optionen > Schnittstellen-Optionen) über *Prioritized Start-up* (Priorisierter Start) aktiviert werden.

Für eine bessere FSU-Leistung sollten die Übertragungseinstellungen der Anschlüsse X01 und X02 folgendermaßen gesetzt werden:

Achtung: Die Einstellungen für den lokalen und den Partner-Port müssen identisch sein.

Gemessene Booting-Zeiten

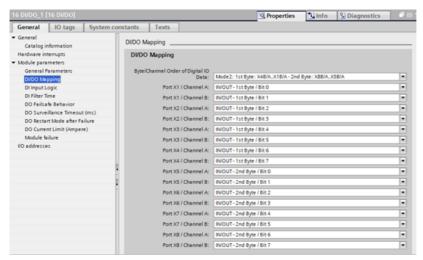
PROFINET FSU-Zeit:1)

< 450 ms

Start-Zeit mit aktivierter FSU:2)

< 500 ms

Start-Zeit **ohne** aktivierter FSU:²⁾


~5500 ms

- 1) Gemessen gemäß der Spezifikation: Interner Switch ist bereit für das Versenden von Telegrammen.
- 2) Die SPS liest einen digitalen Eingang aus und setzt einen digitalen Ausgang am I/O-Gerät nach dem Hochfahren des DUT. Die SPS ist direkt mit dem DUT-Port X01 verbunden, ohne weiteren Switch zwischen SPS und DUT.

9 Zuweisung der Prozessdaten

Dieses Kapitel beschreibt das zyklische I/O-Datenmmapping zwischen der SPS und dem I/O-Gerät. Das Mapping hängt von den gerätespezifischen Einstellungen des Parameters *DI/DO Mapping* ab.

Einzelheiten zur DI/DO Mapping-Mode-Konfiguration finden Sie im Kapitel DI/DO Mapping auf Seite 55.

Legende

X1A = Port 1, Kanal A

1st Byte = "low address"-Byte in einer Siemens SPS

2nd Byte = "high address"-Byte in einer Siemens SPS

(Trifftt zu, wenn die Siemens SPS das Big-Endian-Format verwendet.)

9.1 0980 XSL 3900-121-007D-01F

9.1.1 16 DI/DO

9.1.1.1 Mapping Mode 1

Slot	Input/Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A
	2 nd Byte	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A

9.1.1.2 Mapping Mode 2

Standardeinstellung

Slot	Input/Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X4B	X4A	X3B	X3A	X2B	X2A	X1B	X1A
	2 nd Byte	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

9.1.1.3 Mapping Mode 3

Slot	Input/Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8B	X7B	X6B	X5B	X4B	ХЗВ	X2B	X1B
	2 nd Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A

9.1.1.4 Mapping Mode 4

Slot	Input/Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A
	2 nd Byte	X8B	X7B	X6B	X5B	X4B	ХЗВ	X2B	X1B

9.1.1.5 Mapping Mode 5

9.1.2 16 DI

9.1.2.1 Mapping Mode 1

I	Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	1	1 st Byte	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A
		2 nd Byte	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A

9.1.2.2 Mapping Mode 2

Standardeinstellung

Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X4B	X4A	Х3В	X3A	X2B	X2A	X1B	X1A
	2 nd Byte	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

9.1.2.3 Mapping Mode 3

Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8B	X7B	X6B	X5B	X4B	ХЗВ	X2B	X1B
	2 nd Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A

9.1.2.4 Mapping Mode 4

	Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ĺ	1	1 st Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A
١		2 nd Byte	X8B	X7B	X6B	X5B	X4B	ХЗВ	X2B	X1B

9.1.2.5 Mapping Mode 5

9.1.3 16 DO

9.1.3.1 Mapping Mode 1

Slot	Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A
	2 nd Byte	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A

9.1.3.2 Mapping Mode 2

Standardeinstellung

Slot	Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X4B	X4A	Х3В	ХЗА	X2B	X2A	X1B	X1A
	2 nd Byte	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

9.1.3.3 Mapping Mode 3

Slot	Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8B	X7B	X6B	X5B	X4B	Х3В	X2B	X1B
	2 nd Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A

9.1.3.4 Mapping Mode 4

Slot	Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A
	2 nd Byte	X8B	X7B	X6B	X5B	X4B	Х3В	X2B	X1B

9.1.3.5 Mapping Mode 5

9.1.4 8 DI

9.1.4.1 Mapping Mode 5

Standardeinstellung

Alle 16 Eingänge sind physisch verfügbar, davon können 8 Eingänge in einem Eingangsbyte gemappt werden.

Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8A	X7A	X6A	X5A	X4A	X3A	X2A	X1A

9.1.5 8 DI/8 DO, Opt. 1

9.1.5.1 Mapping Mode 5

Standardeinstellung

Alle 16 Eingänge/Ausgänge sind physisch verfügbar, davon können 8 Eingänge und 8 Ausgänge in einem Eingangsbyte und einem Ausgangsbyte gemappt werden.

Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A
Slot	Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

9.1.6 8 DI/8 DO, Opt. 2

9.1.6.1 Mapping Mode 5

Standardeinstellung

Alle 16 Eingänge/Ausgänge sind physisch verfügbar, davon können 8 Eingänge und 8 Ausgänge in einem Eingangsbyte und einem Ausgangsbyte gemappt werden.

Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A
Slot	Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

9.1.7 8 DI/8 DO, Opt. 3

9.1.7.1 Mapping Mode 5

Standardeinstellung

Alle 16 Eingänge/Ausgänge sind physisch verfügbar, davon können 8 Eingänge und 8 Ausgänge in einem Eingangsbyte und einem Ausgangsbyte gemappt werden.

Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8B	X7B	X6B	X5B	X4B	ХЗВ	X2B	X1B
Slot	Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

9.1.8 8 DI

9.1.8.1 Mapping Mode 5

Standardeinstellung

Alle 16 Ausgänge sind physisch verfügbar, davon können 8 Ausgänge in einem Ausgangsbyte gemappt werden.

Slot	Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A

9.2 0980 XSL 3901-121-007D-01F

9.2.1 16 DI

9.2.1.1 Mapping Mode 1

Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A
	2 nd Byte	X4B	X4A	X3B	X3A	X2B	X2A	X1B	X1A

9.2.1.2 Mapping Mode 2

Standardeinstellung

	Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ſ	1	1 st Byte	X4B	X4A	ХЗВ	X3A	X2B	X2A	X1B	X1A
		2 nd Byte	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

9.2.1.3 Mapping Mode 3

	Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ſ	1	1 st Byte	X8B	X7B	X6B	X5B	X4B	ХЗВ	X2B	X1B
		2 nd Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A

9.2.1.4 Mapping Mode 4

	Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	1	1 st Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A
İ		2 nd Byte	X8B	Х7В	X6B	X5B	X4B	ХЗВ	X2B	X1B

9.2.1.5 Mapping Mode 5

9.2.2 8 DI

9.2.2.1 Mapping Mode 5

Standardeinstellung

Alle 16 Eingänge sind physisch verfügbar, davon können 8 Eingänge in einem Eingangsbyte gemappt werden.

Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8A	X7A	X6A	X5A	X4A	ХЗА	X2A	X1A

9.3 0980 XSL 3903-121-007D-01F

9.3.1 8 DI/8 DO

9.3.1.1 Mapping Mode 5

Standardeinstellung

Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A
Slot	Output	Rit 7	Rit 6	Rit 5	Rit 4	Rit 3	Rit 2	Rit 1	Rit 0

Slot	Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X8B	X8A	X7B	X7A	X6B	X6A	X5B	X5A

9.4 0980 XSL 3923-121-007D-01F

9.4.1 8 DI/8 DO

9.4.1.1 Mapping Mode 5

Standardeinstellung

Slot	Input	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1 st Byte	X4B	X4A	ХЗВ	ХЗА	X2B	X2A	X1B	X1A
Slot	Output	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

9.5 DO-Ströme X1 .. X4

Das Modul kann optional auch in den Slots 2, 3 oder 4 konfiguriert werden, wenn digitale Ausgänge verwendet werden. Der Inhalt ist vier UINT16 des tatsächlich gemessenen Ausgangsstroms.

Ein gemessener Wert von 1000mA wird als "0x03E8 = b0000001111101000" übermittelt.

Slot	Input	Bit							
2 4	1 st Byte X1	15	14	13	12	11	10	9	8
	2 nd Byte X1	7	6	5	4	3	2	1	0
	3 rd Byte X2	15	14	13	12	11	10	9	8
	4 th Byte X2	7	6	5	4	3	2	1	0
	5 th Byte X3	15	14	13	12	11	10	9	8
	6 th Byte X3	7	6	5	4	3	2	1	0
	7 th Byte X4	15	14	13	12	11	10	9	8
	8 th Byte X4	7	6	5	4	3	2	1	0

9.6 DO-Ströme X5 .. X8

Das Modul kann optional auch in den Slots 2, 3 oder 4 konfiguriert werden, wenn digitale Ausgänge verwendet werden. Der Inhalt ist vier UINT16 des tatsächlich gemessenen Ausgangsstroms.

Ein gemessener Wert von 1000mA wird als "0x03E8 = b0000001111101000" übermittelt.

Slot	Input	Bit							
2 4	1 st Byte X1	15	14	13	12	11	10	9	8
	2 nd Byte X1	7	6	5	4	3	2	1	0
	3 rd Byte X2	15	14	13	12	11	10	9	8
	4 th Byte X2	7	6	5	4	3	2	1	0
	5 th Byte X3	15	14	13	12	11	10	9	8
	6 th Byte X3	7	6	5	4	3	2	1	0
	7 th Byte X4	15	14	13	12	11	10	9	8
	8 th Byte X4	7	6	5	4	3	2	1	0

9.7 U_S/U_L-Spannungen X03/X04

Das Modul kann optional auch in den Slots 2, 3 oder 4 konfiguriert werden. Der Inhalt ist zwei UINT16 der tatsächlich gemessenen Spannungsversorgung U_S und U_L .

Ein gemessener Wert von 24 V wird als "0x5DC0 = 0b0101110111000000" übermittelt.

Slot	Input	Bit							
24	1 st Byte U _S	15	14	13	12	11	10	9	8
	2 nd Byte U _S	7	6	5	4	3	2	1	0
	3 rd Byte U _L	15	14	13	12	11	10	9	8
	4 th Byte U _L	7	6	5	4	3	2	1	0

9.8 PROFINET Kanal-Diagnose-Mapping

Port	X8	X7	X6	X5	X4	Х3	X2	X1
I/O Pin	2/4	2/4	2/4	2/4	2/4	2/4	2/4	2/4
I/O Channel	B/A							
PN Diagn. Channel	8	7	6	5	4	3	2	1

Tabelle 17: PROFINET Kanal-Diagnose-Mapping

86

10 Diagnose

10.1 Detaillierte Diagnose-Beschreibung

10.1.1 Fehler der System-/Sensorversorgung U_S

Die Höhe des Spannungswertes eingehender System-/Sensorversorgung wird für das Gerät global überwacht. Ein Unterschreiten der Spannung unter ca. 18 V, bzw. ein Überschreiten der Spannung über ca. 30 V erzeugt eine Fehlermeldung.

Vorsicht: Es muss in jedem Fall sichergestellt sein, dass die Versorgungsspannung, gemessen am entferntesten Teilnehmer, aus Sicht der Systemstromversorgung 21 V DC nicht unterschreitet.

Die folgende Gerätediagnose wird erzeugt:

Kanalnummer der Diagnose	0x8000 (Diagnose nicht kanalspezifisch)
Kanalbezogener Diagnosecode	0x0002
Kanalbezogene Diagnosecode-Meldung	Undervoltage

- ▶ Bei deaktivierten Fehler-Alarmen der U_S Spannungsversorgung ist die U_S-Indikator-LED "aus" im Fall von Spannungsabfällen unter ca. 18 V.
- ▶ Bei aktivierten Fehler-Alarmen der U_S Spannungsversorgung ist die U_S-Indikator-LED "rot" im Fall von Spannungsabfällen unter ca. 18 V.

10.1.2 Fehler der Aktor-Versorgung U_L

Die Höhe des Spannungswertes der eingehenden U_L -Spannungsversorgung wird für das Gerät global überwacht. Bei aktivierten U_L -Spannungsversorgungs-Alarmen wird im Fall von Spannungsabfällen unter ca. 18 V oder Spannungsüberschreitungen über ca. 30 V eine Fehlermeldung erzeugt.

Wenn Ausgangskanäle aktiviert sind, werden weitere, durch den Spannungsfehler verursachte, Fehlermeldungen an den I/O-Ports erzeugt . U_L -Spannungsversorgungs-Alarme sind standardmäßig deaktiviert und können per Parametrierung aktiviert werden.

Die folgende Gerätediagnose wird erzeugt:

Kanalnummer der Diagnose	0x8000 (Diagnose nicht kanalspezifisch)
Kanalbezogener Diagnosecode	0x0118
Kanalbezogene Diagnosecode-Meldung	Low voltage or over voltage of actuator power supply (\mathbf{U}_{L})
Erweiterte Beschreibung	Check wire connection and ${\tt U_L}$ power supply inclusive tolerance

- ▶ Bei deaktivierten Fehler-Alarmen der U_L Spannungsversorgung ist die U_L-Indikator-LED "aus" im Fall von Spannungsabfällen unter ca. 18 V.
- ▶ Bei **aktivierten** Fehler-Alarmen der U_L Spannungsversorgung ist die U_L-Indikator-LED "rot" im Fall von Spannungsabfällen unter ca. 18 V.

10.1.3 Überlast/Kurzschluss der I/O-Port-Sensorversorgungsausgänge

Bei einer Überlast oder einem Kurzschluss zwischen Pin 1 und Pin 3 (GND) der Ports (X1 .. X8) werden folgende kanalspezifische Diagnosemeldungen erzeugt:

Kanalnummer der Diagnose	0x01 0x08
Kanalbezogener Diagnosecode	0x0102
Kanalbezogene Diagnosecode-Meldung	Sensor short circuit

▶ Der zugewiesene rote Port-DIA-Indikator ist aktiv, wenn ein Fehler festgestellt wurde.

10.1.4 Überlast/Kurzschluss der I/O-Port Ch. A als Aktor-Ausgänge

Die digitalen Ausgänge an Kanal A (Pin 4) sind gegen Kurzschlüsse und Überlast geschützt. Im Fall eines Fehlers, wechselt der Ausgang automatisch zu "inactive" und wird anschließend zyklisch zurück auf "active" gestellt, sofern die Standard-Einstellung (*DO Restart Mode*-Parameter = "Automatic Restart after Failure") verwendet wird.

Im *DO Restart Mode*-Parameter = "Restart after Output Reset" muss der Ausgang via SPS auf "low" eingestellt werden, bevor der Ausgang erneut auf "high" eingestellt werden kann.

Bei der Aktivierung eines Ausgangskanals (steigende Flanke des Kanalzustands) erfolgt die Filterung der Kanalfehler für die Dauer, die Sie über den Parameter *Surveillance Timeout* bei der Konfiguration des Gerätes festgelegt haben. Der Wert dieses Parameters umfasst einen Bereich von 0 bis 255 ms, die Werkseinstellung ist 80 ms.

Der Filter dient zur Vermeidung von vorzeitigen Fehlermeldungen bei Einschalten einer kapazitiven Last.

Das Gerät liefert im Fehler-Fall die folgende PROFINET Diagnosemeldung:

Kanalnummer der Diagnose	0x01 0x08
Kanalbezogener Diagnosecode	0x0100
Kanalbezogene Diagnosecode-Meldung	Actuator short circuit or supply error channel A

▶ Der zugewiesene rote Port-DIA-Indikator ist aktiv, wenn ein Fehler festgestellt wurde.

10.1.5 Überlast/Kurzschluss der I/O-Port Ch. B als Aktor-Ausgänge

Die digitalen Ausgänge an Kanal A (C/Q / Pin 4) sind gegen Kurzschlüsse und Überlast geschützt. Im Fall eines Fehlers, wechselt der Ausgang automatisch zu "inactive" und wird anschließend zyklisch zurück auf "active" gestellt, sofern die Standard-Einstellung (DO Restart Mode-Parameter = "Automatic Restart after Failure") verwendet wird.

Im *DO Restart Mode*-Parameter = "Restart after Output Reset" muss der Ausgang via SPS auf "inactive" eingestellt werden, bevor der Ausgang erneut auf "active" eingestellt werden kann.

Bei der Aktivierung eines Ausgangskanals (steigende Flanke des Kanalzustands) erfolgt die Filterung der Kanalfehler für die Dauer, die Sie über den Parameter *Surveillance Timeout* bei der Konfiguration des Gerätes festgelegt haben. Der Wert dieses Parameters umfasst einen Bereich von 0 bis 255 ms, die Werkseinstellung ist 80 ms.

Der Filter dient zur Vermeidung von vorzeitigen Fehlermeldungen bei Einschalten einer kapazitiven Last.

Das Gerät liefert im Fehler-Fall die folgende PROFINET-Diagnosemeldung:

Kanalnummer der Diagnose	0x01 0x08
Kanalbezogener Diagnosecode	0x0101
Kanalbezogene Diagnosecode-Meldung	Actuator short circuit or supply error channel B

Der zugewiesene rote Port-DIA-Indikator ist aktiv, wenn ein Fehler festgestellt wurde.

10.1.6 Generischer Parameter-Fehler

Wenn ein Geräteparameter an eine ungültige Adresse geschrieben wird (beispielsweise "Sub-Slot / Index") oder der Parameter-Dateninhalt als ungültig für das Gerät bemerkt wird, wird folgende gerätespezifische Diagnosemeldung erzeugt:

Kanalnummer der Diagnose	0x8000 (Diagnose nicht kanalspezifisch)
Kanalbezogener Diagnosecode	0x0010
Kanalbezogene Diagnosecode-Meldung	Parameter error

10.1.7 I/O-Mapping Parameter-Fehler

Der individuelle I/O-Daten Mapping-Parameter der Status/Control-Daten wird vom PROFINET IO-Gerät überprüft. Wird ein Fehler innerhalb dieses Parameter-Blocks festgestellt (beispielsweise wenn ein Bit doppelt gemapped ist), wird folgende Meldung erzeugt:

Kanalnummer der Diagnose	0x8000 (Diagnose nicht kanalspezifisch)
Kanalbezogener Diagnosecode	0x011A
Kanalbezogene Diagnosecode-Meldung	I/O mapping configuration faulty

10.1.8 Force-Mode Diagnose

Wenn Forcing aktiv ist, wird folgende Diagnosemeldung erzeugt:

Kanalnummer der Diagnose	0x8000 (Diagnose nicht kanalspezifisch)		
Kanalbezogener Diagnosecode	0x000A		
Kanalbezogene Diagnosecode-Meldung	Simulation active		

10.1.9 Interner Modul-Fehler

Der interne Modul-Fehler-Status (beispielsweise interne Statusabweichungen) wird durch folgende Diagnosemeldung berichtet. Für weitere Information verwenden Sie das Web-Interface des Gerätes.

Kanalnummer der Diagnose	0x8000 (Diagnose nicht Kanal-spezifisch)		
Kanal bezogener Diagnosecode	0x0009		
Kanal bezogene Diagnosecode-Meldung	Error		

10.2 Tabelle mit PROFINET Diagnose-Codes

Die folgende Tabelle liefert eine Übersicht vordefinierter Diagnose-Codes in der PROFINET-Spezifikation (0x0000 – 0x17FF). Nicht alle der aufgelisteten Codes sind in Verwendung.

Diagnose-Code	Definition	Тур
0x0000	Reserved	
0x0002	Undervoltage	Error
0x0009	Error	Error
0x000A	Simulation active	Error
0x0010	Parameter error	Error
0x0118	Low voltage of actuator power supply (U _L). Check power supply	Error
0x011A	I/O mapping configuration faulty	Error

11 IIoT-Funktionalität

Die LioN-X-Gerätevarianten bieten eine Vielzahl neuer Schnittstellen und Funktionen für die optimale Integration in bestehende oder zukünftige IIoT (Industrial Internet of Things)-Netzwerke. Die Geräte fungieren weiterhin als Feldbus-Geräte, die mit einer SPS (Speicherprogrammierbare Steuerung) kommunizieren und auch von dieser gesteuert werden können.

Zusätzlich bieten die Geräte gängige IIoT-Schnittstellen, welche neue Kommunikationskanäle neben der SPS ermöglichen. Die Kommunikation wird über die IIoT-relevanten Protokolle MQTT und OPC UA ausgeführt. Mit Hilfe dieser Schnittstellen können nicht nur alle Informationen in einem LioN-X-Gerät gelesen werden. Sie ermöglichen auch deren Konfiguration und Kontrolle, wenn der Benutzer dies wünscht. Alle Schnittstellen können weitreichend konfiguriert werden und bieten eine Read-Only-Funktionalität.

Alle LioN-X-Varianten bieten die Nutzer-Administration, welche auch für den Zugriff und die Kontrolle auf die IIoT-Protokolle verfügbar ist. Dies erlaubt Ihnen, alle Modifikations-Optionen für die Geräte-Einstellungen über personalisierte Nutzer-Autorisierung zu verwalten.

Alle IIoT-Protokolle können unabhängig vom Feldbus genutzt und konfiguriert werden. Ebenso ist es möglich, die Geräte komplett ohne die Hilfe einer SPS zu verwenden und diese stattdessen über IIoT-Protokolle zu steuern.

Achtung: Wenn Sie die IIoT-Funktionalität verwenden, empfiehlt sich eine gesicherte lokale Netzwerk-Umgebung ohne direkten Zugang zum Internet.

11.1 MQTT

Das MQTT (Message Queueing Telemetry Transport)-Protokoll ist ein ofenes Netzwerkprotokoll für Maschine-zu-Maschine-Kommunikation, welches die Übermittlung telemetrischer Daten-Meldungen zwischen Geräten liefert. Der integrierte MQTT-Client erlaubt es dem Gerät, ein spezifisches Set an Informationen an einen MQTT-Broker zu veröffentlichen.

Die Veröffentlichung der Meldungen kann entweder periodisch auftreten oder manuell getriggert werden.

11.1.1 MQTT-Konfiguration

Im **Auslieferungszustand** sind die MQTT-Funktionen **deaktiviert**. Der MQTT-Client kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel MQTT-Konfiguration - Schnellstart-Anleitung auf Seite 114.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/mqtt.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/mqtt.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
mqtt-enable	boolean	Master switch for the MQTT client.	true / false
broker	string	IP address of the MQTT Broker	"192.168.1.1"
login	string	Username for MQTT Broker	"admin" (Default: null)
password	string	Password for MQTT Broker	"private" (Default: null)
port	number	Broker port	1883
base-topic	string	Base topic	"iomodule_[mac]" (Default: " lionx ")
will-enable	boolean	If true, the device provides a last will message to the broker	true / false
will-topic	string	The topic for the last will message.	(Default: null)
auto-publish	boolean	If true, all enabled domains will be published automatically in the specified interval.	true / false
publish-interval	number	The publish interval in ms if autopublish is enabled. Minimum is 250 ms.	2000
publish-identity	boolean	If true, all identity domain data will be published	true / false
publish-config	boolean	If true, all config domain data will be published	true / false
publish-status	boolean	If true, all status domain data will be published	true / false
publish-process	boolean	If true, all process domain data will be published	true / false
commands-allowed	boolean	Master switch for MQTT commands. If false, the device will not subscribe to any command topic, even if specific command topics are activated below.	true / false
force-allowed	boolean	If true, the device accepts force commands via MQTT.	true / false
reset-allowed	boolean	If true, the device accepts restart and factory reset commands via MQTT.	true / false
config-allowed	boolean	If true, the device accepts configuration changes via MQTT.	true / false

Element	Datentyp	Beschreibung	Beispieldaten
qos	number	for all published messages.	0 = At most once 1 = At least once 2 = Exactly once

Tabelle 18: MQTT-Konfiguration

MQTT-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

- Ein nicht wohlgeformtes JSON-Objekt verursacht einen Fehler.
- Nicht existierende Parameter verursachen einen Fehler.
- ▶ Parameter mit falschem Datentyp verursachen einen Fehler.

Es ist nicht erlaubt alle verfügbaren Parameter auf einmal zu schreiben. Sie sollten nur einen oder eine geringe Anzahl an Parametern auf einmal schreiben.

Beispiele:

```
{"status": -1, "error": [{"Element": "publish-interval", "Message": "Integer
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

Für mehr Informationen, beachten Sie das Kapitel MQTT-Topics auf Seite 99.

11.1.2 MQTT-Topics

MQTT bezieht sich hauptsächlich auf Topics. Alle Meldungen werden einem Topic angehängt, welches der Nachricht selbst Kontext hinzufügt. Topics können aus einem String bestehen und dürfen Schrägstriche (/) beinhalten. Topic-Filter können außerdem Wildcard-Symbole wie z.B. (#) beinhalten.

11.1.2.1 Base-Topic

Für alle LioN-X-Varianten gibt es ein konfigurierbares Base-Topic, welches das Präfix für alle Topics darstellt. Das Base-Topic kann vom Nutzer frei gewählt werden. Das Base-Topic kann ebenfalls ausgewählte Variablen beinhalten, wie in Tabelle 19: Base-Topic-Variablen auf Seite 99 gezeigt.

Variablen im Base-Topic müssen in eckigen Klammern ("[]") geschrieben werden. Die folgenden Variablen sind möglich:

Variable	Beschreibung	
mac	The MAC address of the device	
name	The name of the device	
order	The ordering number of the device	
serial	The serial number of the device	
ip0	IP-Adresse Oktett	
ip1		
ip2		
ip3		

Tabelle 19: Base-Topic-Variablen

Beispiel:

Das Base-Topic "io_[mac]" wird in "io_A3B6F3F0F2F1" übersetzt.

Alle Daten sind in Domains organisiert. Der Domain-Name ist das erste Level im Topic nach dem Base-Topic. Beachten Sie folgende Schreibweise:

Base-Topic/domain/....

Es gibt folgende Domains:

Domain-Name	Definition	Beispielinhalt
identity	All fixed data which is defined by the used hardware and which cannot be changed by configuration or at runtime.	Device name, ordering number, MAC address, port types, port capabilites and more.
config	Configuration data which is commonly loaded once at startup, mostly by a PLC.	IP address, port modes, input logic, failsafe values and more.
status	All (non-process) data which changes quite often in normal operation.	Bus state, diagnostic information, Device status and data.
process	All process data which is produced and consumed by the device itself or by attached devices.	Digital inputs, digital outputs, cyclic data.

Tabelle 20: Daten-Domains

Oft gibt es ein Topic für alle Gateway-bezogenen Informationen und Topics für jeden Port. Alle Identity-Topics werden nur einmal beim Gerätestart veröffentlicht, da diese Information statisch sein sollte. Alle anderen Topics werden, abhängig von ihrer Konfiguration, entweder in einem festen Intervall veröffentlicht oder manuell ausgelöst.

Topic	Beispielinhalt	Veröffent- lichungs- Zähler gesamt	Veröffent- lichungs- Intervall
[base-topic]/identity/ gateway	Name, ordering number, MAC, vendor, I&M etc.	1	Startup
[base-topic]/identity/ port/n	Port name, port type	8	Startup
[base-topic]/config/ gateway	Configuration parameters, ip address etc.	1	Interval
[base-topic]/config/port/ n	Port mode, data storage, mapping, direction	8	Interval
[base-topic]/status/ gateway	Bus state, device diagnosis, master events	1	Interval
[base-topic]/status/port/ n	Port or channel diagnosis, state	8	Interval
[base-topic]/process/ gateway	All Digital IN/OUT	1	Interval
[base-topic]/process/ port/n	Digital IN/OUT per port, pdValid	8	Interval

Tabelle 21: Datenmodell

Ein MQTT-Client, der eines oder mehrere dieser Topics abonnieren möchte, kann auch Wildcards verwenden.

Gesamtes Topic	Beschreibung	
[base-topic]/identity/gateway	Receive only indentity objects for the gateway	
[base-topic]/identity/#	Receive all data related to the identity domain	
[base-topic]/status/port/5	Receive only status information for port number 5	
[base-topic]/+/port/2	Receive information of all domains for port number 2	
[base-topic]/process/port/#	Receive only process data for all ports	
[base-topic]/config/#	Receive config data for the gateway and all ports.	

Tabelle 22: Anwendungsbeispiele

11.1.2.2 Publish-Topic

Übersicht über alle Publish-JSON-Daten für die definierten Topics:

Identity/gateway	
Eingabe	Datentyp
product_name	json_string
ordering_number	json_string
device_type	json_string
serial_number	json_string
mac_address	json_string
production_date	json_string
fw_name	json_string
fw_date	json_string
fw_version	json_string
hw_version	json_string
family	json_string
location	json_string
country	json_string
fax	json_string
vendor_name	json_string
vendor_address	json_string
vendor_phone	json_string
vendor_email	json_string
vendor_techn_support	json_string
vendor_url	json_string
vendor_id	json_integer
device_id	json_integer

Tabelle 23: Identity/gateway

Config/gateway					
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen	
fieldbus_protocol	json_string	PROFINET EtherNet/IP EtherCAT® Modbus TCP CC-Link IE Field Basic			
network_configuration	json_string	PROFINET: DCP Manual EtherNet/IP: Manual Rotary DHCP EtherCAT®: Manual Modbus TCP: Manual DHCP Rotary CC-Link IE Field Basic: Manual Rotary			
rotary_switches	json_integer	0 999			
ip_address	json_string		192.168.1.1		
subnet_mask	json_string		255.255.255.0		
report_ul_alarm	json_boolean	true / false	true		
report_do_fault_without_ul	json_boolean	true / false	false		
force_mode_lock	json_boolean	true / false	false		
web_interface_lock	json_boolean	true / false	false		

Config/gateway				
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
fast_startup	json_boolean	true / false	false	PROFINET and EIP only

Tabelle 24: Config/gateway

Status/gateway Status/gateway				
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
protocol	json_string	PROFINET: UNKNOWN OFFLINE STOP IDLE OPERATE EtherNet/IP: CONNECTED DISCONNECTED EtherCAT®: PREOP SAFEOP OP INIT UNKNOWN Modbus TCP: No Connections Connected CC-Link IE Feld Basic: ON STOP DISCONNECTED		
system_voltage_fault	json_boolean	true / false		
actuator_voltage_fault	json_boolean	true / false		
internal_module_error	json_boolean	true / false		
simulation_active_diag	json_boolean	true / false		
us_voltage	json_integer	0 32		in Volts
ul_voltage	json_integer	0 32		in Volts
forcemode_enabled	json_boolean	true / false		

Tabelle 25: Status/gateway

Process/gateway				
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
Input_data	json_integer[]			
output_data	json_integer[]			

Tabelle 26: Process/gateway

Identity/port/1 8					
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen	
port	json_integer	18			
type	json_string	Digital Input DIO Digital Output DIO Pin 4 Only DI Pin 4 Only DO Pin 4 Only Not available Unknown			
max_output_power_cha	json_string	2.0_mA 0.5_mA			
max_output_power_chb	json_string	2.0_mA 0.5_mA			
channel_cha	json_string	Digital Input Digital Output DIO Digital Input/Output Auxiliary Power Auxiliary with DO Not available Unknown			
channel_chb	json_string	Digital Input Digital Output DIO Digital Input/Output Auxiliary Power Auxiliary with DO Not available Unknown			

Tabelle 27: Identity/port/1 .. 8

Config/port/1 8					
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen	
port	json_integer	18			
direction_cha	json_string	Output Input Inactive Auxiliary Power DIO Unknown			
direction_chb	json_string	Output Input Inactive Auxiliary Power DIO Unknown			
restart_mode_cha	json_string	Manual Auto			
restart_mode_chb	json_string	Manual Auto			
input_polarity_cha	json_string	NO NC			
input_polarity_chb	json_string	NO NC			
input_filter_cha	json_integer			ms	
input_filter_chb	json_integer			ms	
do_auto_restart_cha	json_boolean	true / false			
do_auto_restart_chb	json_boolean	true / false			
failsafe_cha	json_string	set_low set_high hold_last	set_low		
failsafe_chb	json_string	set_low set_high hold_last	set_low		
surveillance_timeout_cha	json_integer	0 255	80		

Config/port/1 8				
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
surveillance_timeout_chb	json_integer	0 255	80	
io_mapping_cha	json_integer	0 15	channel number	16DIO only
io_mapping_chb	json_integer	0 15	channel number	16DIO only

Tabelle 28: Config/port/1 .. 8

Status/port/1 8				
Eingabe	Datentyp	Umfang	Standardwert	Bemer- kungen
port	json_integer	18		
physical_state_cha	json_integer	0 1		
physical_state_chb	json_integer	0 1		
actuator_short_circuit_cha	json_boolean	true / false		
actuator_short_circuit_chb	json_boolean	true / false		
sensor_short_circuit	json_boolean	true / false		
current_cha	json_integer			mA
current_chb	json_integer			mA
current_pin1	json_integer			mA

Tabelle 29: Status/port/1 .. 8

11.1.2.3 Command-Topic (MQTT Subscribe)

Der Hauptzweck von MQTT ist das Publizieren von Gerätedaten an einen Broker. Diese Daten können von allen registrierten Abonnenten (Subscriber) bezogen werden, die daran interessiert sind. Andersherum ist es aber auch möglich, dass das Gerät selbst ein Topic auf dem Broker abonniert hat und dadurch Daten erhält. Diese Daten können Konfigurations- oder Forcing-Daten sein. Dies erlaubt dem Nutzer die vollständige Kontrolle eines Gerätes ausschließlich via MQTT, ohne die Verwendung anderer Kommunikationswege wie Web oder REST.

Wenn die Konfiguration grundsätzlich Commands zulässt, abonniert das Gerät spezielle Command-Topics, über die es Befehle anderer MQTT-Clients erhalten kann. Das Command-Topic basiert auf dem Base-Topic. Es hat immer die folgende Form:

[base-topic]/command

Nach dem Command-Topic stehen feste Topics für verschiedene schreibbare Objekte. Das Datenfomat der MQTT-Payload ist immer JSON. Es besteht die Möglichkeit, auch nur ein Subset der möglichen Objekte und Felder einzustellen.

[...]/forcing

Verwenden Sie das Command-Topic [base-topic]/command/forcing für *Force object*-Daten. Das *Force object* kann jede der folgenden Eigenschaften besitzen:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
forcemode	boolean	true / false	Forcing Authority: on/off
digital	array (Tabelle 31: Force object: Digital auf Seite 111)		

Tabelle 30: Force object – Eigenschaften

Für die *Force object*-Eigenschaften, digital und IOL, werden verschiedene Spezifikationswerte aufgereiht:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
port	integer	1, 2, 5	
channel	string	"a", "b"	
force_dir	string	"out", "in", "clear"	
force_value	integer	0, 1	

Tabelle 31: Force object: Digital

[...]/config

Verwenden Sie das Command-Topic [base-topic]/command/config für *Config object*-Daten. Das *Config object* kann jede der folgenden Eigenschaften besitzen:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
portmode	array (Tabelle 33: Config object: Portmode auf Seite 112)		
ip_address	string	"192.168.1.5"	
subnet_mask	string	"255.255.255.0"	
gateway	string	"192.168.1.100"	

Tabelle 32: Config object – Eigenschaften

Für die *Config object-*Eigenschaft, portmode werden verschiedene Spezifikationswerte aufgereiht:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
port	integer	2	
channelA*	string	"dio", "di", "do", "iol", "off"	
channelB*	string	"dio", "di", "do", "iol", "off", "aux"	
inlogicA	string	"no", "nc"	
inlogicB	string	"no", "nc"	
filterA	integer	3	input filter in ms
filterB	integer	3	input filter in ms
autorestartA	boolean		
autorestartB	boolean		

Tabelle 33: Config object: Portmode

^{*}channelA = Pin 4, channelB = Pin 2

[...]/reset

Verwenden Sie das Command-Topic [base-topic]/command/reset für Reset object-Daten über Neustart- und Factory-Reset-Themen. Das Reset object kann jede der folgenden Eigenschaften besitzen:

Eigenschaft	Datentyp	Beispiel-Werte	Anmerkungen
factory_reset	boolean	true / false	
system_reset	boolean	true / false	

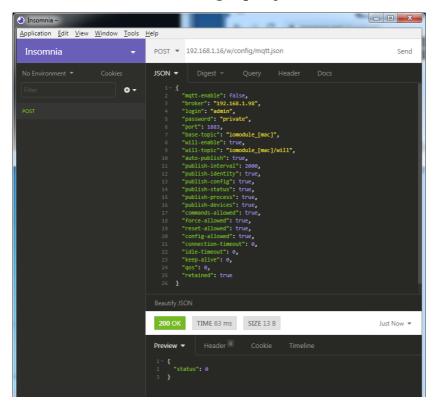
Tabelle 34: Reset object-Eigenschaften

[...]/publish

Verwenden Sie das Command-Topic [base-topic]/command/publish für *Publish object-*Daten.

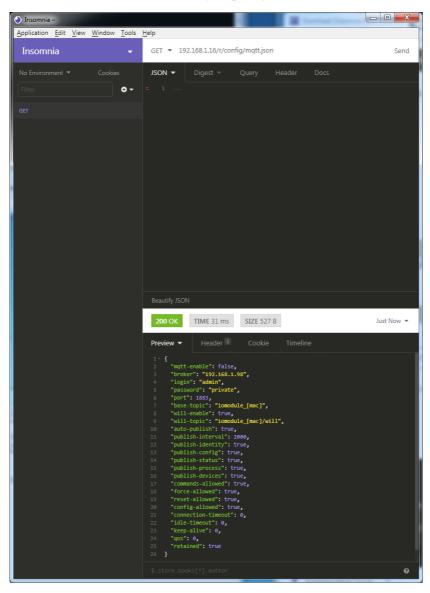
Veröffentlichung aller Topics manuell auslösen (kann verwendet werden, wenn "auto publish" ausgeschaltet ist oder wenn "long interval" eingestellt ist).

11.1.3 MQTT-Konfiguration - Schnellstart-Anleitung


Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

11.1.3.1 MQTT-Konfiguration über JSON

1. Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/


2. MQTT konfigurieren:

POST: [IP-address]/w/config/mqtt.json

3. MQTT auslesen:

GET: [IP-address]/r/config/mqtt.json

11.2 OPC UA

OPC Unified Architecture (OPC UA) ist ein Plattform-unabhängiger Standard mit einer Service-orientierten Architektur für die Kommunikation in und mit industriellen Automationssystemen.

Der OPC UA-Standard basiert auf dem Client-Server-Prinzip und lässt Maschinen und Geräte, unabhängig von bevorzugten Feldbussen, genauso horizontal untereinander wie vertikal mit dem ERP-System oder der Cloud kommunizieren. LioN-X stellt einen OPC UA-Server auf Feld-Geräte-Ebene bereit, mit dem sich ein OPC UA-Client für eine datensichere Informationsübertragung verbinden kann.

11.2.1 OPC UA-Konfiguration

Im **Auslieferungszustand** sind die OPC UA-Funktionen **deaktiviert**. Der OPC UA-Server kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP request"-Anfrage gesendet wurde.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/opcua.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/opcua.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart

Baumübersicht der OPC UA-Objekte:

```
    Gateway

    Identity

    Name

                  • MAC

    Ordering Number

    Production Date

    Capabilites

    Firmware Versions

    Status (r)
    US present
    UL present
                 • US diag

    US Voltage
    UL Voltage

                  • IME

    Forcemode Diag

    Rotary positions

         • Forcing (r)

    Forcing active

    Forcing client

                  · OwnForcing flag

    Config (rw)
    IP Config

    suppressActuatorDiagWithoutUL
    suppressUSDiag

    suppressULDiag
    quickConnect

    Process (r)
    Digital Inputs

    Digital Outputs
    Producing Data (to PLC)

    Consuming Data (from PLC)
    Valid masks

         · Commands (w)
                  • Restart

    Factory Reset

                  · Forcemode enable
        • Port n ("X1"-"X8")

    Identity

    Identity
    Port Name
    Port Type
    Channel m ("Pin 4" / "Pin 2")
    Identity (r)
    Channel Name
    Channel Type
    MaxOutputCurrent
    Status (r)

    Status (r)
    Actuator Diag

    Actuator Voltage
    Actuator Current

                                    · Channel Failsafe flag
                           · Config (rw)

    Surveillance Timeout

                                    • Failsafe Config

    Channel Direction

    Channel Current Limit

    Auto Restart

    InputFilterTime

    InputLogic

Process (r)
Output Bit
Input Bit
Consuming Bit
                                    • Producing Bit

    Forcing (rw)

    Force channel on/off

                                    · Force value on/off

    Simulate channel
    SImulate value

    Status (r)
    Pin 1 Short Circuit Dia

    Pin 1 Voltage
    Pin 1 Current

    Config (rw)
    Pin 1 Current limit
```

Alle Konfigurationselemente sind optional und an keine bestimmte Reihenfolge gebunden. Nicht jedes Element muss gesendet werden. Dies bedeutet, dass nur Konfigurationsänderungen übernommen werden.

Optional: Die Konfigurations-Parameter von OPC UA können direkt über das Web-Interface eingestellt werden. Für das Sharing mit weiteren Geräten, können Sie das Web-Interface herunterladen.

Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem Statusfeld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

Beispiele:

```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

11.2.1.1 Gateway-Objekte

Identity

Name	Datentyp	Beispiel
Device Name	UA_STRING	
Device ID	UA_STRING	
MAC address	UA_STRING	
Ordering Number	UA_STRING	
Serial Number	UA_STRING	
Production Date	UA_STRING	
Hardware Version	UA_STRING	
App Firmware Version	UA_STRING	
Fieldbus Firmware Version	UA_STRING	
IO Firmware Version	UA_STRING	
Running Fieldbus	UA_STRING	
Forcemode supported	UA_BOOLEAN	Forcing supported by module variant

Status (read)

Name	Datentyp	Einheit	Beispiel
US present	UA_BOOLEAN		
UL present	UA_BOOLEAN		
US diagnosis	UA_BOOLEAN		
UL diagnosis	UA_BOOLEAN		
Internal Module Error diag	UA_BOOLEAN		

Name	Datentyp	Einheit	Beispiel
Forcemode diag	UA_BOOLEAN		
US voltage	UA_DOUBLE	V	23.2
UL voltage	UA_DOUBLE	V	22.9
Rotary position	UA_UINT16		343

Forcing (read)

Name	Datentyp	Beispiel
Forcing active	UA_BOOLEAN	
Forcing client	UA_STRING	if forcemode is not active, string is empty
Own Forcing	UA_BOOLEAN	Indicates if OPC UA is currently forcing
Forcing possible	UA_BOOLEAN	true if forcing by OPC UA is possible
Forcemode lock	UA_BOOLEAN	Forcing locked by PLC

Config (read + write)

Name	Datentyp	Beispiel
IP address	UA_STRING	
Subnet Mask	UA_STRING	
Default Gateway IP	UA_STRING	
Suppress US diag	UA_BOOLEAN	
Suppress UL diag	UA_BOOLEAN	
Supppres Actuator Diag w/o UL	UA_BOOLEAN	
QuickConnect	UA_BOOLEAN	

Process (read)

Name	Datentyp	Beispiel
Input Data	UA_UINT16	ioInput for all channels
Output Data	UA_UINT16	ioOutput for all channels
Consuming Data	UA_UINT16	Data from the PLC to the device
Producing Data	UA_UINT16	Data from the device to the PLC

Commands (write)

Name	Argumente	Return	Beispiel
Restart	void	UA_INT32	
Factory reset	void	UA_INT32	
Forcemode enable	void	UA_INT32	
Forcemode disable	void	UA_INT32	

11.2.1.2 Ports-Objekte

Identity

Name	Datentyp	Beispiel
Name	UA_STRING	"X1"
Туре	UA_STRING	"DIO"

Channel *m* ("Pin 4" / "Pin 2")

Details unter Channel objects auf Seite 123.

Status (read)

Name	Datentyp	Einheit	Beispiel
Sensor Diag	UA_BOOLEAN		
Pin 1 Voltage	UA_DOUBLE	V	22.5
Pin 1 Current	UA_INT16	mA	1900

Config (read + write)

Name	Datentyp	Einheit	Beispiel
Pin 1 Current Limit	UA_INT16	mA	1000

11.2.1.3 Channel objects

Identity (read)

Name	Datentyp	Einheit	Beispiel
Name	UA_STRING		"X1A"
Туре	UA_STRING		"DIO"
MaxOutputCurrent	UA_INT16	mA	1300

Status (read)

Name	Datentyp	Einheit	Beispiel
Actuator Diag	UA_BOOL		
Actuator Voltage	UA_DOUBLE	V	23.5
Actuator Current	UA_INT16	mA	800
Channel Failsafe	UA_BOOL		

Config (read + write)

Name	Datentyp	Einheit	Beispiel / Anmerkung
Surveillance Timeout	UA_UINT8	ms	80 ms
Failsafe Config	UA_ENUMERATION		Low Hi Hold Last
Channel Direction	UA_ENUMERATION		DIO Input Output Inactive
Channel Current Limit	UA_UINT16	mA	2000 mA
Auto Restart	UA_BOOL		

Name	Datentyp	Einheit	Beispiel / Anmerkung
InputFilterTime	UA_UINT8	ms	3ms
InputLogic	UA_ENUMERATION		NO NC

Process (read)

Name	Datentyp	Beispiel / Anmerkung
Output	UA_BOOLEAN	Output type channels only.
Input	UA_BOOLEAN	Input type channels only.
Consuming	UA_BOOLEAN	
Producing	UA_BOOLEAN	

Forcing (read + write)

Name	Datentyp	Beispiel / Anmerkung
Force channel	UA_BOOLEAN	Enable forcing with the current force value or disable forcing for this channel. Output type channels only.
Force value	UA_BOOLEAN	When changed by the user it will start forcing with the new value if forcing is enabled for opcua. Output type channels only.
Simulate channel	UA_BOOLEAN	Enable simulation with the current force value or disable simulation for this channel. Input type channels only.

Name	Datentyp	Beispiel / Anmerkung
Simulate value	UA_BOOLEAN	When changed by the user it will start simulation with the new value if forcing is enabled for opcua. Input type channels only.

11.2.2 OPC UA Address-Space

OPC UA bietet verschiedene Dienste auf den LioN-X-Geräten an, mit denen ein Client durch die Address-Space-Hierarchie navigieren und Variablen lesen oder schreiben kann. Zusätzlich kann der Client bis zu 10 Attribute des Address-Space bezüglich Wert-Veränderungen beobachten.

Eine Verbindung zu einem OPC UA-Server wird über die Endpoint-URL erreicht:

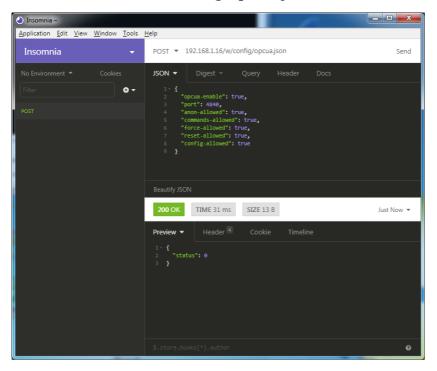
```
opc.tcp://[ip-address]:[port]
```

Verschiedene Geräte-Daten wie die MAC-Adresse, Geräteeinstellungen, Diagnosen oder Status-Informationen können via *Identity objects*, *Config objects*, *Status objects* und *Process objects* ausgelesen werden.

Command objects können gelesen und geschrieben werden. Dadurch ist es möglich, beispielsweise neue Netzwerk-Parameter an das Gerät zu übertragen, um Force-Mode zu verwenden oder um das komplette Gerät auf die Werkseinstellungen zurückzusetzen.

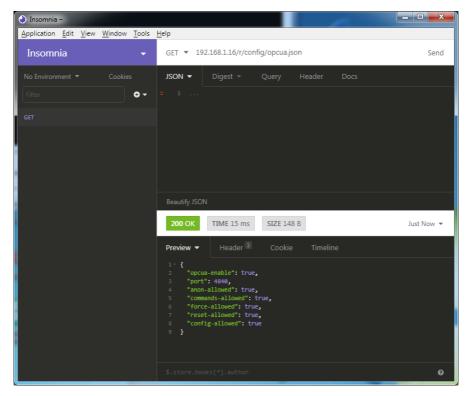
Die folgenden Grafiken zeigen den OPC UA Address-Space der LioN-X-Geräte. Die dargestellten Objekte und Informationen sind abhängig von der verwendeten Gerätevariante.

11.2.3 OPC UA-Konfiguration - Schnellstart-Anleitung



Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

11.2.3.1 OPC UA-Konfiguration über JSON


- **1.** Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/
- 2. OPC UA konfigurieren:

POST: [IP-address]/w/config/opcua.json

3. OPC UA auslesen:

GET: [IP-address]/r/config/opcua.json

11.3 REST API

Die "Representational State Transfer – Application Programming Interface (REST API)" ist eine programmierbare Schnittstelle, die HTTP-Anfragen für GET- und POST-Daten verwendet. Dies ermöglicht den Zugriff auf detaillierte Geräteinformationen.

Für alle LioN-X-Varianten kann die REST API verwendet werden, um den Geräte-Status auszulesen. Für die LioN-X Multiprotokoll-Varianten kann die REST API zusätzlich dafür verwendet werden, Konfigurations- und Forcing-Daten zu schreiben.

Eine angepasste Belden REST API wird in den folgenden Kapiteln beschrieben.

11.3.1 Standard Geräte-Information

Request-Methode: http GET

Request-URL: <ip>/info.json

Parametern.a.Response-FormatJSON

Ziel des "Standard device information"-Request ist es, ein komplettes Abbild des aktuellen Geräte-Status zu erhalten. Das Format ist JSON.

11.3.2 Struktur

Name	Datentyp	Beschreibung	Beispiel
name	string	Device name	"0980 XSL 3912- 121-007D-00F"
order-id	string	Ordering number	"935 700 001"
fw-version	string	Firmware version	"V.1.1.0.0 - 01.01.2021"
hw-version	string	Hardware version	"V.1.00"
mac	string	MAC address of the device	"3C B9 A6 F3 F6 05"
bus	number	0 = No connection 1 = Connection with PLC	1
failsafe	number	0 = Normal operation 1 = Outputs are in failsafe	0
ip	string	IP address of the device	
snMask	string	Subnet Mask	
gw	string	Default gateway	
rotarys	array of numbers (3)	Current position of the rotary switches: Array element 0 = x1 Array element 1 = x10 Array element 2 = x100	
ulPresent	boolean	True, if there is a UL voltage supply detected within valid range	
usVoltage_mv	number	US voltage supply in mV	
ulVoltage_mv	number	UL voltage supply in mV (only available for devices with UL supply)	
inputs	array of numbers (2)	Real state of digital inputs. Element 0 = 1 Byte: Port X1 Channel A to Port X4 Channel B Element 0 = 1 Byte: Port X5 Channel A to Port X8 Channel B	[128,3]
output	array of numbers (2)	Real State of digital outputs. Element 0 =1 Byte: Port X1 Channel A to port X4 Channel B Element 0 = 1 Byte: Port X5 Channel A to port X8 Channel B	[55,8]

Name	Datentyp	Beschreib	ung	Beispiel
consuming	array of numbers (2)	Cyclic data	from PLC to device	
producing	array of numbers (2)	Cyclic data	from device to PLC	
diag	array of numbers (4)	Diagnostic information		
fieldbus	FIELDBUS Object			
FIELDBUS Object				
fieldbus_name	string	Currently us	sed fieldbus	
state	number	Fieldbus sta	ate	
state_text	number	Textual representation of fieldbus state: 0 = Unknown 1 = Bus disconnected 2 = Preop 3 = Connected 4 = Error 5 = Stateless		
forcing	FORCING Object	Information about the forcing state of the device		
channels	Array of CHANNEL (16)	Basic inforr channels	nation about all input/output	

Name	Datentyp	Beschreibung	Beispiel
CHANNEL Object			
name	string	Name of channel	
type	number	Hardware channel type as number: 0 = DIO 1 = Input 2 = Output 3 = Input/Output 4 = Channel not available 5 = Channel not available 6 = Channel not available 7 = Channel not available 8 = Channel not available	
type_text	string	Textual representation of the channel type	
config	number	Current configuration of the channel: 0 = DIO 1 = Input 2 = Output 3 = Channel not available 4 = Deactivated 5 = Channel not available	
config_text	string	Textual representation of the current config	
inputState	boolean	Input data (producing data) bit to the PLC	
outputState	boolean	Output data bit to the physical output pin	
forced	boolean	True, if the output pin of this channel is forced	
simulated	boolean	True, if the input value to the PLC of this channel is simulated	
actuatorDiag	boolean	True, if the output is in short circuit / overload condition	
sensorDiag	boolean	True, if the sensor supply (Pin 1) is in short circuit / overload condition	

Name	Datentyp	Beschreibung	Beispiel
maxOutputCurrent _mA	number	Maximum output current of the output in mA	
current_mA	number	Measured current of the output in mA (if current measurement is available)	
voltage_mV	number	Measured voltage of this output in mV (if voltage measurement is available)	
PORT Object			
port_type	string	Textual representation of the port type	
aux_mode	number	Indicates the configured mode for the Pin 2: 0 = No AUX 1 = AUX output (always on) 2 = Digital output (can be controlled by cyclic data) 3 = Digital input	
aux_text	string	Textual representation of the current aux mode	"AUX Output"
ds_fault	number	Data storage error number	
ds_fault_text	string	Textual data storage error.	
diag	array of DIAG (n)	Array of port related events	
DIAG Object			
error	number	Error code	
source	string	Source of the current error.	"device" "master"
message	string	Error message	"Supply Voltage fault"
FORCING Object		Forcing information of the device	
forcingActive	boolean	Force mode is currently active	
forcingPossible	boolean	True, if forcing is possible and force mode can be activated	
AuthPossible	boolean	True, if the JSON Interface can obtain forcing autorization	
ownForcing	boolean	True, if forcing is performed by REST API at the moment	
currentClient	string	Current forcing client identifier	

Name	Datentyp	Beschreibung	Beispiel
digitalOutForced	array of numbers (2)	The force values of all 16 digital output channels.	
digitalOutMask	array of numbers (2)	The forcing mask of all 16 digital output channels.	
digitalInForced	array of numbers (2)	The force values of all 16 digital input channels.	
digitalInMask	array of numbers (2)	The forcing mask of all 16 digital input channels.	

11.3.3 Konfiguration und Forcing

Methode: POST

URL: <ip>/w/force.json

Parameter: None

Post-Body: JSON-Objekt

Eigenschaft	Datentyp	Beispielwerte	Beschreibung
forcemode	boolean	true / false	Forcing authority on/off
portmode	array (Port mode object)		
digital	array (Digital object)		

Tabelle 35: Root object

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
port	integer	07	
channel	integer	"a","b"	optional default is "a"
direction	string	"dio","di","do", "off", "aux"	
inlogica	string	"no","nc"	
inlogicb	string	"no","nc"	

Tabelle 36: Port mode object

Eigenschaft	Datentyp	Beispielwerte	Anmerkungen
port	integer	07	
channel	string	"a","b"	
force_dir	string	"phys_out","plc_in","clear"	optional default is "phys_out"
force_value	integer	0,1	

Tabelle 37: Digital object

11.4 CoAP-Server

Das Constrained Application Protocol (CoAP) ist ein spezialisiertes Internet-Anwendungsprotokoll für eingeschränkte Netzwerke wie verlustbehaftete oder stromsparende Netzwerke. CoAP ist vor allem in der M2M-Kommunikation (Machine to Machine) hilfreich und kann dafür verwendet werden, vereinfachte HTTP-Anfragen von Low-Speed-Netzwerken zu übersetzen.

CoAP basiert auf dem Server-Client-Prinzip und ist ein Service-Layer-Protokoll, mit dem Knoten und Maschinen miteinander kommunizieren können. Die LioN-X Multiprotokoll-Varianten stellen mittels einer REST-API-Schnittstelle über UDP die CoAP-Server-Funktionalitäten zur Verfügung.

11.4.1 CoAP-Konfiguration

Im Auslieferungszustand sind die CoAP-Funktionen *deaktiviert*. Der CoAP-Server kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel CoAP-Konfiguration - Schnellstart-Anleitung auf Seite 138.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/coapd.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/coapd.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
enable	boolean	Master-Switch für den CoAP-Server	true / false
port	integer (0 bis 65535)	Port des CoAP-Servers	5683

Tabelle 38: CoAP-Konfiguration

CoAP-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

Beispiele:

```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean
expected"}]}

{"status": 0}

{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

11.4.2 REST API-Zugriff via CoAP

Die Verbindung zum CoAP-Server auf den LioN-X Multiprotokoll-Varianten kann über folgende URL hergestellt werden:

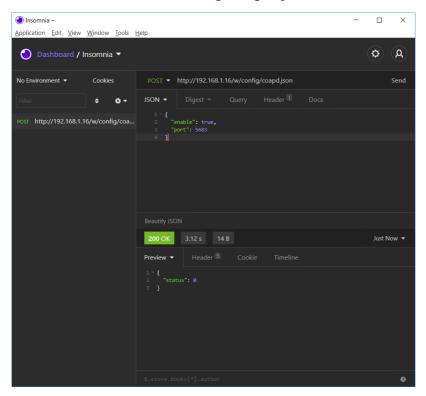
```
coap://[ip-address]:[port]/[api]
```

Für LioN-X können Sie via CoAP-Endpoint auf die folgenden REST API-Anfragen (JSON-Format) zugreifen:

Тур	API	Hinweis
GET	/r/status.lr	
GET	/r/system.lr	
GET	/info.json"	
GET	/r/config/net.json	
GET	/r/config/mqtt.json	
GET	/r/config/opcua.json	
GET	/r/config/coapd.json	
GET	/r/config/syslog.json	
GET	/contact.json	
GET	/fwup_status	

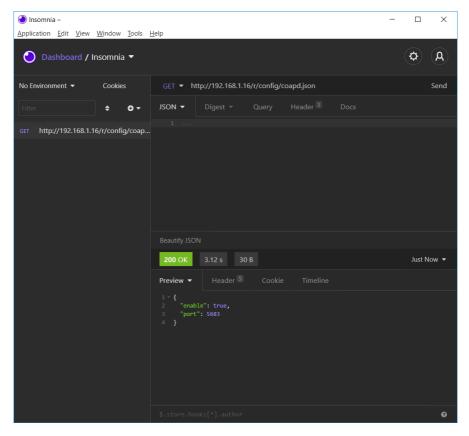
Tabelle 39: REST API-Zugriff via CoAP

11.4.3 CoAP-Konfiguration - Schnellstart-Anleitung


Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

11.4.3.1 CoAP-Konfiguration über JSON

1. Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/


2. CoAP konfigurieren:

POST: [IP-address]/w/config/coapd.json

3. CoAP-Konfiguration auslesen:

GET: [IP-address]/r/config/coapd.json

11.5 Syslog

Die LioN-X Multiprotokoll-Varianten stellen einen Syslog-Client zur Verfügung, der sich mit einem konfigurierten Syslog-Server verbinden kann und in der Lage ist, Meldungen zu protokollieren.

Syslog ist ein plattformunabhängiger Standard für die Protokollierung von Meldungen. Jede Meldung enthält einen Zeitstempel sowie Informationen über den Schweregrad und das Subsystem. Das Syslog-Protokoll RFC5424 basiert auf dem Server-Client-Prinzip und lässt Maschinen und Geräte Nachrichten im Netzwerk senden und zentral sammeln. (Für weitere Details zum verwendeten Syslog-Standard, gehen Sie auf https://datatracker.ietf.org/doc/html/rfc5424.)

LioN-X unterstützt die Speicherung von 256 Meldungen in einem Ringspeicher, die an den konfigurierten Syslog-Server gesendet werden. Wenn der Ring mit 256 Meldungen voll ist, wird jeweils die älteste Meldung durch die neu eintreffenden Meldungen ersetzt. Auf dem Syslog-Server können alle Meldungen gespeichert werden. Der Syslog-Client speichert keine der Meldungen dauerhaft.

11.5.1 Syslog-Konfiguration

Im **Auslieferungszustand** sind die Syslog-Funktionen **deaktiviert**. Der Syslog-Client kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel Syslog-Konfiguration - Schnellstart-Anleitung auf Seite 143.

Die Konfigurations-URL lautet:

```
http://[ip-address]/w/config/syslog.json
```

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

```
http://[ip-address]/r/config/syslog.json
```

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
syslog-enable	boolean	Master-Switch für den Syslog Client	true / false
global-severity	integer	Meldegrad des Syslog Client 0 – Emergency 1 – Alert 2 – Critical 3 – Error 4 – Warning 5 – Notice 6 – Info 7 – Debug Der Client speichert alle Meldungen des eingestellten Schweregrads, inklusive aller Meldungen mit niedrigerem Level.	0/1/2/ 3 /4/5/6/7
server-address	string (IP- Adresse)	IP-Adresse des Syslog-Servers	192.168.0.51 (Default: null)
server-port	integer (0 bis 65535)	Server-Port des Syslog-Servers	514
server-severity	integer (0 bis 7)	Meldegrad des Syslog-Servers 0 – Emergency 1 – Alert 2 – Critical 3 – Error 4 – Warning 5 – Notice 6 – Info 7 – Debug	0/1/2/ 3 /4/5/6/7

Tabelle 40: Syslog-Konfiguration

Syslog-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

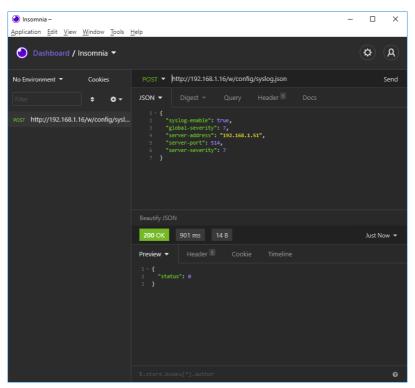
Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

Beispiele:

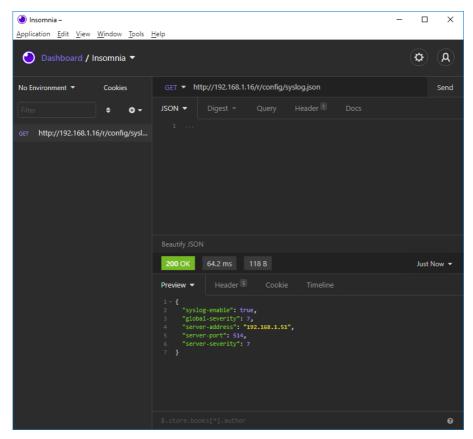
```
{"status": -1, "error": [{"Element": "upcua-enable", "Message": "Boolean expected"}]}
{"status": 0}
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON object"}]}
```

11.5.2 Syslog-Konfiguration - Schnellstart-Anleitung



Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

11.5.2.1 Syslog-Konfiguration über JSON


- **1.** Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/
- 2. Syslog konfigurieren:

POST: [IP-address]/w/config/syslog.json

3. Syslog-Konfiguration auslesen:

GET: [IP-address]/r/config/syslog.json

11.6 Network Time Protocol (NTP)

Die LioN-X Multiprotokoll-Varianten stellen einen NTP-Client (Version 3) zur Verfügung, der sich mit einem konfigurierten NTP-Server verbinden kann und in der Lage ist, die Netzwerkzeit in einem konfigurierbaren Interval zu synchronisieren.

NTP ist ein Netzwerkprotokoll, das UDP-Datagramme zum Senden und Empfangen von Zeitstempeln verwendet, um sie mit einer lokalen Uhr zu synchronisieren. Das NTP-Protokoll RFC1305 basiert auf dem Server-Client-Prinzip und unterstützt ausschließlich die Synchronisation mit der Universalzeit "Coordinated Universal Time" (UTC). (Für weitere Details zum verwendeten NTP-Standard, gehen Sie auf https://datatracker.ietf.org/doc/html/rfc1305.)

11.6.1 NTP-Konfiguration

Im **Auslieferungszustand** ist der NTP-Client **deaktiviert**. Der NTP-Client kann konfiguriert werden, indem entweder das Web-Interface verwendet wird oder direkt über ein JSON-Objekt, welches in einer "HTTP request"-Anfrage gesendet wurde. Für mehr Informationen, beachten Sie das Kapitel NTP-Konfiguration - Schnellstart-Anleitung auf Seite 147.

Die Konfigurations-URL lautet:

http://[ip-address]/w/config/ntpc.json

Die Konfiguration kann ebenfalls als JSON-File rückgelesen werden:

http://[ip-address]/r/config/ntpc.json

Die Konfiguration erfolgt in Form eines JSON-Objektes, wobei jedes JSON-Member ein Konfigurationselement darstellt. Das Objekt muss nicht alle Elemente beinhalten. Nur die zur Verfügung gestellten Elemente werden geändert. Alle Konfigurationsänderungen greifen erst nach einem Geräte-Neustart.

Die folgenden Konfigurationselemente sind verfügbar (die Default-Werte sind hervorgehoben):

Element	Datentyp	Beschreibung	Beispieldaten
NTP-Client- Status	boolean	Master-Switch für den NTP-Client	true / false
Server-Adresse	string	IP-Adresse des NTP-Servers	192.168.1.50
Server-Port	integer	Port des NTP-Servers	123
Update-Intervall	integer	Intervall, in dem sich der Client mit dem konfigurierten NTP-Server verbindet (siehe Tabellenzeile "Server-Adresse").	1/2/10/ 60
		Hinweis: Der Wert wird in Sekunden angegeben.	

Tabelle 41: NTP-Konfiguration

NTP-Response:

Die resultierende Antwort ist ein JSON-Objekt mit einem "status"-Feld. Der Status sollte "0" sein, wenn kein Fehler auftritt und "-1", wenn ein Fehler auftritt.

Im Fehlerfall beinhaltet die Antwort einen Fehler-Array.

Der Fehler-Array beinhaltet ein Fehler-Objekt für jeden aufgetretenen Fehler. Das Objekt besteht aus einem Feld "Element", welches das Konfigurationselement benennt, das den Fehler verursacht hat, und aus einem Feld "Message" für die Fehlermeldung.

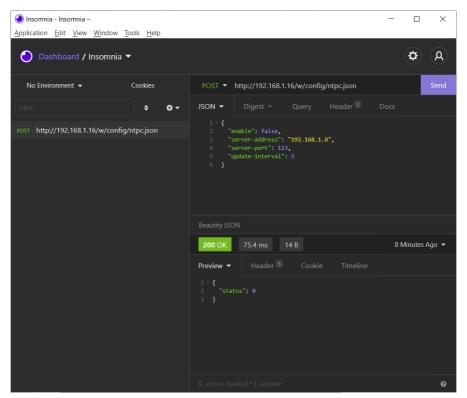
Beispiele:

```
{"status": -1, "error": [{"Element": "ntpc-enable", "Message": "Boolean
expected"}]}

{"status": 0}

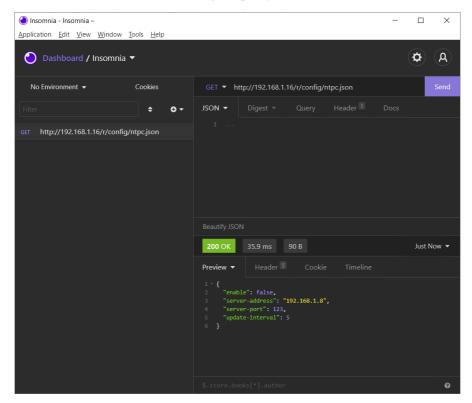
{"status": -1, "error": [{"Element": "root", "Message": "Not a JSON
object"}]}
```

11.6.2 NTP-Konfiguration - Schnellstart-Anleitung


Achtung: Lumberg AutomationTM übernimmt keinerlei Verantwortung für jeglichen Inhalt der referenzierten Webseiten und gibt keine Garantie auf die Funktionen der genannten Drittanbieter-Software.

11.6.2.1 NTP-Konfiguration über JSON

1. Abhängig von Ihrem Anwendungsfall, laden Sie *Insomnia* oder eine vergleichbare Anwendung herunter und installieren diese: https://insomnia.rest/download/


2. NTP konfigurieren:

POST: [IP-address]/w/config/ntpc.json

3. NTP-Konfiguration auslesen:

GET: [IP-address]/r/config/ntpc.json

12 Integrierter Webserver

Alle Gerätevarianten verfügen über einen integrierten Webserver, welcher Funktionen für die Konfiguration der Geräte und das Anzeigen von Statusund Diagnoseinformationen über ein Web-Interface zur Verfügung stellt.

Das Web-Interface bietet einen Überblick über die Konfiguration und den Status des Gerätes. Es ist über das Web-Interface ebenfalls möglich, einen Neustart, ein Zurücksetzen auf die Werkseinstellungen oder ein Firmware-Update durchzuführen.

Geben Sie in der Adresszeile Ihres Webbrowsers "http://" gefolgt von der IP-Adresse ein, z. B. "http://192.168.1.5". Falls sich die Startseite der Geräte nicht öffnet, überprüfen Sie Ihre Browser- und Firewall-Einstellungen.

12.1 LioN-X 0980 XSL... - Varianten

12.1.1 Status-Seite

Die Status-Seite bietet einen schnellen Überblick über den aktuellen Zustand des Gerätes.

Die linke Seite zeigt eine grafische Darstellung des Moduls mit allen LEDs und den Positionen der Drehkodierschalter.

Auf der rechten Seite zeigt die Tabelle "Device Information" (Geräteinformationen) einige grundlegende Daten zum Modul, wie z. B. die Variante, den Zustand der zyklischen Kommunikation und einen Diagnoseindikator. Dieser zeigt an, ob eine Diagnose im Modul vorliegt.

Die Tabelle "Port Information" (Port-Informationen) zeigt die Konfiguration und den Zustand der I/O-Ports.

12.1.2 Port-Seite

Neben ausführlichen Port-Informationen werden im Feld **Port Diagnosis** eingehende sowie ausgehende Diagnosen als Klartext angezeigt. **Pin 2** und **Pin 4** enthalten Informationen zur Konfiguration und zum Zustand des Ports.

12.1.3 Systemseite

Die Systemseite zeigt die grundlegende Informationen zum Modul an wie die Firmware-Version, Geräte-Informationen, Ethernet-, Netzwerk- und Feldbus-Informationen.

Restart Device (Gerät neu starten)

Das Modul initialisiert die Rücksetzung der Software.

Reset to Factory Settings (Auf Werkseinstellungen zurücksetzen)

Das Modul stellt die Werkseinstellungen wieder her.

IP Settings

Verwenden Sie diesen Parameter, um die aktuelle IP-Adresse des Moduls anzupassen.

Diese Funktion ist für PROFINET nur bei der Inbetriebnahme von Nutzen. Normalerweise findet die SPS die IP-Adresse beim Start-Up über den PROFINET-Gerätenamen heraus und stellt diese automatisch ein.

Firmware Update

Das Modul initialisiert ein Firmware-Update.

Wählen Sie für ein Firmware-Update den *.ZIP-Container, der auf unserer Website verfügbar ist, oder wenden Sie sich an unser Support-Team. Befolgen Sie anschließend die Anweisungen, die auf dem Bildschirm angezeigt werden.

12.1.4 Benutzerseite

Über die Benutzerseite kann die Benutzerverwaltung für das Web-Interface vorgenommen werden. Über diese Seite können neue Benutzer mit den Zugriffsberechtigungen "Admin" oder "Write" (Schreiben) hinzugefügt werden. Ändern Sie das Admin-Standardpasswort nach der Konfiguration des Gerätes aus Sicherheitsgründen.

Standard Benutzer Login-Daten:

User: admin

Password: private

13 Technische Daten

Die folgenden Abschnitte geben einen Überblick über die wichtigsten funktionalen Daten für die Bedienung des Gerätes. Mehr Informationen und detaillierte technische Angaben finden Sie im entsprechenden **Data Sheet** des gewünschten Produktes auf catalog.belden.com innerhalb der Produktspezifischen Download-Bereiche .

13.1 Allgemeines

Schutzart	IP65		
(Gilt nur, wenn die Steckverbinder verschraubt sind oder Schutzkappen verwendet werden.) ³	IP67 IP69K		
Umgebungstemperatur (während Betrieb und Lagerung)	0980 XSL 3x00-12140 °C +70 °C 0980 XSL 3x01-121 0980 XSL 3x03-121		
Gewicht	LioN-X 60 mm	ca. 500 gr.	
Umgebungsfeuchtigkeit	Max. 98 % RH (Für UL-Anwendungen: Max. 80 % RH)		
Gehäusematerial	Zinkdruckguss		
Oberfläche	Nickel matt		
Brennbarkeitsklasse	UL 94 (IEC 61010)		
Vibrationsfestigkeit (Schwingen) DIN EN 60068-2-6 (2008-11)	15 g/5–500 Hz		
Stoßfestigkeit DIN EN 60068-2-27 (2010-02)	50 g/11 ms +/- X, Y, Z		
Anzugsdrehmomente	Befestigungsschrauben M4: 1 Nm Erdungsanschluss M4: 1 Nm M12-Steckverbinder: 0,5 Nm		
Zugelassene Kabel	Ethernet-Kabel nach IEEE 802.3, min. CAT 5 (geschirmt) Max. Länge von 100 m, ausschließlich innerhalb eines Gebäudes		

Tabelle 42: Allgemeine Informationen

³ Unterliegt nicht der UL-Untersuchung.

13.2 PROFINET-Protokoli

Protokoll	PROFINET IO Device V2.41	
Konformitätsklasse	C (CC-C)	
Netzlastklasse	III	
Update Zyklus	1 ms	
GSDML-Datei	GSDML-V2.41-LumbergAutomation-LioN-Xyyyymmdd.xml	
Übertragungsrate	100 Mbit/s, Vollduplex	
Übertragungsverfahren Autonegotiation	100BASE-TX wird unterstützt	
Herstellerkennung (Vendor ID)	16 A _H	
Geräte-ID	0x0400 (gleich für alle LioN-X-Varianten)	
Unterstützte Ethernet-Protokolle	Ping ARP LLDP SNMPv1 (Netzwerk-Diagnose) ■ Read community: public ■ Write community: private DCP HTTP TCP/ IP MRP Client	
PROFINET-Funktion	Fast Start Up (Priorisiertes Startup) Shared Device	
Switch-Funktionalität	integriert IRT wird unterstützt	
PROFINET-Schnittstelle Anschlüsse Autocrossing	2 M12-Buchsen, 4-polig, D-kodiert (s. Anschlussbelegungen) 2 M12 Hybrid male/female, 8-polig wird unterstützt	
Galvanisch getrennte Ethernet- Ports -> FE	2000 V DC	

Tabelle 43: PROFINET-Protokoll

13.3 Spannungsversorgung der Modulelektronik/Sensorik

Port X03, X04	M12-L-coded Power, Stecker/Buchse, 5-polig			
	Pin 1 / Pin 3			
Nennspannung U _S	24 V DC (SELV/PELV)			
Stromstärke U _S	Max. 16 A			
Spannungsbereich	21 30 V DC	-		
Stromverbrauch der Modulelektronik	In der Regel 160 mA (+/-20 % bei U _S Nennspannung)			
Spannungsunterbrechung	Max. 10 ms			
Restwelligkeit U _S	Max. 5 %			
Stromaufnahme Sensorsystem (Pin 1)	0980 XSL 3x00-121 0980 XSL 3x01-121	Port X1 X8 (Pin 1)	max. 4 A pro Port (bei T _{ambient} = 30° C)	
	0980 XSL 3x03-121	Port X1 X4 (Pin 1)	max. 4 A pro Port (bei T _{ambient} = 30° C)	
Spannungspegel der Sensorversorgung	Min. (U _S – 1,5 V)			
Kurzschluss-/ Überlastschutz der Sensorvers.	Ja, pro Port			
Verpolschutz	Ja			
Betriebsanzeige (U _S)	LED grün: 18 V (+/- 1 V) < U _S			
LED rot: U _S < 18			J _S < 18 V (+/- 1 V)	

Tabelle 44: Informationen zur Spannungsversorgung der Modulelektronik/ Sensorik

Achtung: Überschreiten Sie nicht die folgenden Maximalströme für die Sensorversorgung:

- Max. 4,0 A pro Port
- ► Max. 5,0 A für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8

▶ Max. 9,0 A gesamt für die ganze Port-Gruppe X1 .. X8 Derating beachten!

13.4 Spannungsversorgung der Aktorik

Port X03, X04	M12-L-coded Power, Stecker/Buchse, 5-polig Pin 2 / Pin 4
Nennspannung U _L	24 V DC (SELV/PELV)
Spannungsbereich	18 30 V DC
Stromstärke U _L	Max. 16 A
Restwelligkeit U _L	Max. 5 %
Verpolschutz	Ja
Betriebsanzeige (U _L)	LED grün: 18 V (+/- 1 V) < U_L LED rot: U_L < 18 V (+/- 1 V) oder U_L > 30 V (+/- 1 V) * wenn "Report U_L supply voltage fault" aktiviert ist.

Tabelle 45: Informationen zur Spannungsversorgung der Aktorik

13.5 I/O-Ports

0980 XSL 3900-121	Ports X1 X8	DI, DO	M12-Buchse, 5-polig
0980 XSL 3901-121	Ports X1 X8	DI	
0980 XSL 39x3-121	Ports X1 X4	DI	
	Ports X5 X8	DO	

Tabelle 46: I/O ports: Funktionsübersicht

13.5.1 Digitale Eingänge

Eingangs- beschaltung	0980 XSL 3900-121		Typ 3 gemäß
	0980 XSL 3901-121		IEC 61131-2
	0980 XSL 39x3-121		
Nenneingangs- spannung	24 V DC		
Eingangsstrom	typischerweise 3 mA		
Kanaltyp	Schließer, p-schaltend		
Anzahl der	0980 XSL 3900-121	X1 X8	16
digitalen Eingänge	0980 XSL 3901-121	7	
	0980 XSL 39x3-121	X1 X4	8
Statusanzeige	Gelbe LED für Kanal A (Pin 4) Weiße LED für Kanal B (Pin 2)		
Diagnoseanzeige	Rote LED pro Port		

Tabelle 47: I/O-Ports konfiguriert als digitaler Eingang

13.5.2 Digitale Ausgänge

Achtung: Überschreiten Sie nicht die folgenden Maximalströme für die Sensorversorgung:

- Max. 2,0 A pro Port
- Max. 5,0 A für jedes Port-Paar X1/X2, X3/X4, X5/X6, X7/X8
- ► Max. 9,0 A gesamt für die ganze Port-Gruppe X1 .. X8 (X5 .. X8 bei 8DI8DO-Geräten)

Derating beachten!

Ausgangstyp	Schließer, p-schaltend		
Ausgangsspannung pro Kanal			
Signalstatus "1" Signalstatus "0"	min. (U _L -1 V)		
Max. Ausgangsstrom pro Gerät	0980 XSL 3900-121	9 A	
	0980 XSL 39x3-121	9 A	
Max. Ausgangsstrom pro Kanal	0980 XSL 3900-121 (X1 X8)	2 A	
	0980 XSL 39x3-121 (X5 X8)	2 A	
Kurzschlussfest/überlastfest	ja / ja		
Verhalten bei Kurzschluss oder Überlast	Abschaltung mit automatischem Einschalten (parametriert)		
Anzahl der digitalen Ausgänge	0980 XSL 3900-121 (X1 X8)	16	
	0980 XSL 39x3-121 (X5 X8)	8	
Statusanzeige	Gelbe LED pro Ausgang Kanal A (Pin 4) Weiße LED pro Ausgang Kanal B (Pin 2)		
Diagnoseanzeige	Rote LED pro Port		

Tabelle 48: I/O-Ports konfiguriert als digitaler Ausgang

Warnung: Bei gleichzeitiger Verwendung von Geräten mit galvanischer Trennung und Geräten ohne galvanische Trennung innerhalb desselben Systems wird die galvanische Trennung aller angeschlossenen Geräte aufgehoben.

13.6 **LEDs**

LED	Farbe	Beschreibung	
U _L	Grün	Hilfssensor-/Aktuatorspannung OK	
		18 V (+/- 1 V) < U _L /U _{AUX} < 30 V (+/- 1 V)	
İ	Rot [*]	Hilfssensor-/Aktuatorspannung NIEDRIG	
		U_L < 18 V (+/- 1 V) oder U_L > 30 V (+/- 1 V)	
		* wenn "Report U _L supply voltage fault" aktiviert ist.	
	AUS	Keiner der zuvor beschriebenen Zustände.	
Us	Grün	System-/Sensorspannung OK	
		18 V (+/- 1 V) < U _S < 30 V (+/- 1 V)	
	Rot	System-/Sensorspannung NIEDRIG	
		$U_{\rm S}$ < 18 V (+/- 1 V) oder $U_{\rm S}$ > 30 V (+/- 1 V)	
	Rotes Blinken	Gerät wird auf Werkseinstellungen zurückgesetzt (Position der Drehkodierschalter: 9-7-9)	
	AUS	Keiner der zuvor beschriebenen Zustände.	
X1 X8 A	Gelb	Status digitaler Eingang und digitaler Ausgang an Pin-4-Leitung "Ein".	
	Rot	Überlast oder Kurzschluss an Pin 4-Leitung.	
		/ Überlast oder Kurzschluss an Leitung L+ (Pin 1) / Kommunikationsfehler	
	AUS	Keiner der zuvor beschriebenen Zustände.	
X1 X8 B	Weiß	Status digitaler Eingang und digitaler Ausgang an Pin-2-Leitung	
X1X0 B	VVEIIS	"Ein".	
	Rot	Überlast oder Kurzschluss an Pin 2-Leitung.	
		/ Überlast oder Kurzschluss an Leitung L+ (Pin 1) / Kommunikationsfehler	
	ALIO		
	AUS	Keiner der zuvor beschriebenen Zustände.	
P1 Lnk / Act P2 Lnk / Act	Links and a south		
	Gelbes Blinken	Datenaustausch mit einem anderen Teilnehmer.	
	AUS	Keine Verbindung zu weiterem Teilnehmer. Kein Link, kein Datenaustausch.	

LED	Farbe	Beschreibung	
BF	Rot	Bus Fault. Keine Konfiguration, keine oder langsame physikal. Verbindung.	
	Rotes Blinken mit 2 Hz	Link vorhanden, aber keine Kommunikationsverbindung zur PROFINET-Steuerung.	
	AUS	PROFINET-Steuerung hat eine aktive Verbindung zum Gerät aufgebaut.	
DIA	Rot	PROFINET Modul-Diagnostik-Alarm aktiv.	
	Rotes Blinken mit 1 Hz	Watchdog Time-out; FailSafe Mode ist aktiv.	
	Rotes Blinken mit 2 Hz, 3 sec	DCP-Signal-Service wird über den Bus ausgelöst.	
	Rotes Doppelblinken	Firmware-Update	
	AUS	Keiner der zuvor beschriebenen Zustände	

Tabelle 49: Informationen zu den LED-Farben

13.7 Datenübertragungszeiten

Die folgenden Tabellen bieten eine Übersicht der internen Datenübertragungszeiten eines LioN-X.

Es gibt drei gemessene Datenrichtungswerte für jeden Anwendungsfall:

- ▶ **SPS zu DO:** Übertragung von geänderten SPS-Ausgangsdaten zum digitalen Ausgangskanal.
- ▶ **DI zu SPS:** Übertragung eines geänderten digitalen Eingangssignals am digitalen Eingangskanal zur SPS.
- ▶ Round-trip time (RTT): Übertragung von geänderten SPS-Ausgangsdaten zum Digitalausgang. Der digitale Ausgang ist mit einem digitalen Eingang verbunden. Übertragung eines geänderten digitalen Eingangssignals am Kanal zur SPS. RTT = [SPS zu DO] + [DI zu SPS].

Die gemessenen Werte sind der Ethernet-Datenübertragungsstrecke entnommen. Daher sind die Werte ohne SPS-Prozesszeiten und SPS-Zykluszeiten angegeben.

Um nutzerabhängige Datenübertragung und Round-Trip-Zeiten möglicher Eingangsfilter berechnen zu können, müssen SPS-Prozesszeiten und Zykluszeiten miteinbezogen werden.

Anwendungsfall 1:

LioN-X Digital-I/O-Konfiguration mit aktiviertem Web-Interface bei deaktivierten IIoT-Protokollen

16DIO-Variante (0980 XSL 3900-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms			
	Minimum Durchschnitt Maximum			
SPS zu DO	2.2	3.6	5.0	
DI zu SPS	3.1	3.0	4.7	
RTT	6.0	7.6	9.0	

8DI/8DO-Variante ohne galvanische Trennung (0980 XSL 3913-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms		
	Minimum Durchschnitt Maximum		Maximum
SPS zu DO	1.9	3.2	4.7
DI zu SPS	2.1	2.6	3.1
RTT	4.0	5.8	7.0

8DI/8DO-Variante mit galvanischer Trennung (0980 XSL 3903-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms		
	Minimum	Durchschnitt	Maximum
SPS zu DO	2.2	3.6	5.3
DI zu SPS	3.3	4.0	4.6
RTT	6.0	7.6	9.0

Anwendungsfall 2:

LioN-X Digital-I/O-Konfiguration mit aktiviertem Web-Interface bei *aktivierten* IIoT-Protokollen

16DIO-Variante (0980 XSL 3900-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms		
	Minimum	Durchschnitt	Maximum
SPS zu DO	3.4	5.1	7.6
DI zu SPS	5.8	6.4	7.6
RTT	10.0	11.5	14.0

8DI/8DO-Variant ohne galvanische Trennung (0980 XSL 3913-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms		
	Minimum	Durchschnitt	Maximum
SPS zu DO	3.2	4.8	7.1
DI zu SPS	3.3	3.8	4.3
RTT	7.0	8.6	11.0

8DI/8DO-Variante mit galvanischer Trennung (0980 XSL 3903-121-007D-01F):

Datenrichtung	Datenübertragungszeit in ms		
	Minimum	Durchschnitt	Maximum
SPS zu DO	3.5	5.2	7.6
DI zu SPS	5.7	6.4	7.1
RTT	10.0	11.6	14.0

14 Zubehör

Unser Angebot an Zubehör finden Sie auf unserer Website:

http://www.beldensolutions.com